Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Contributions of cellular leak pathways to net NaHCO3 and NaCl absorption.
P A Preisig, R J Alpern
P A Preisig, R J Alpern
Published June 1, 1989
Citation Information: J Clin Invest. 1989;83(6):1859-1867. https://doi.org/10.1172/JCI114092.
View: Text | PDF
Research Article

Contributions of cellular leak pathways to net NaHCO3 and NaCl absorption.

  • Text
  • PDF
Abstract

Proton and formic acid permeabilities were measured in the in vivo microperfused rat proximal convoluted tubule by examining the effect on intracellular pH when [H] and/or [formic acid] were rapidly changed in the luminal or peritubular fluids. Apical and basolateral membrane H permeabilities were 0.52 +/- 0.07 and 0.67 +/- 0.18 cm/s, respectively. Using these permeabilities we calculate that proton backleak from the luminal fluid to cell does not contribute significantly to net proton secretion in the early proximal tubule, but may contribute in the late proximal tubule. Apical and basolateral membrane formic acid permeabilities measured at extracellular pH 6.62 were 4.6 +/- 0.5 X 10(-2) and 6.8 +/- 1.5 X 10(-2) cm/s, respectively. Control studies demonstrated that the formic acid permeabilities were not underestimated by either the simultaneous movement of formate into the cell or the efflux of formic acid across the opposite membrane. The measured apical membrane formic acid permeability is too small to support all of transcellular NaCl absorption in the rat by a mechanism that involves Na/H-Cl/formate transporters operating in parallel with formic acid nonionic diffusion.

Authors

P A Preisig, R J Alpern

×

Full Text PDF | Download (1.78 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts