Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Protection against nerve toxicity by monoclonal antibodies to the sodium channel blocker tetrodotoxin.
R I Huot, … , D L Armstrong, T C Chanh
R I Huot, … , D L Armstrong, T C Chanh
Published June 1, 1989
Citation Information: J Clin Invest. 1989;83(6):1821-1826. https://doi.org/10.1172/JCI114087.
View: Text | PDF
Research Article

Protection against nerve toxicity by monoclonal antibodies to the sodium channel blocker tetrodotoxin.

  • Text
  • PDF
Abstract

The sodium channel blocker, tetrodotoxin (TDT), was conjugated to keyhole limpet hemocyanin (KLH) and used to immunize BALB/c mice. Anti-TDT antibodies were detected in serum by ELISA and reached stable levels 4-5 wk after the first immunization. Spleens from immunized mice were fused with NS-1 mouse myeloma cells and approximately 9,329 resultant hybrids were screened by ELISA for reactivity to TDT. Two stable hybrids were isolated, subcloned, and characterized. These hybrids, termed TD13a1 and TD2C5, secreted specific anti-TDT antibodies that recognized TDT but not the related sodium channel blocker, saxitoxin (STX), as determined by competition ELISA. Both antibodies were of the IgG1k subclass with Ka's approaching 10(7) M-1. The inhibitory ability of these antibodies was tested by a competitive displacement assay for [3H]STX on rat brain membranes. Both antibodies strongly inhibited TDT binding to membranes. A nanomole of TD2C5 was able to bind approximately 1.8 nmol of TDT, whereas a comparable amount of TD13a1 bound half as much. Furthermore, TD2C5 was able to protect against TDT-induced reduction of peripheral nerve action potentials in rat tibial nerve when administered in situ. These antibodies thus represent potentially useful reagents for neurobiologic research, detection of toxin contamination and diagnosis of poisoning, and may provide protection against the toxicity of TDT in vivo.

Authors

R I Huot, D L Armstrong, T C Chanh

×

Full Text PDF | Download (1.12 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts