Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Glomerular actions of endothelin in vivo.
V Kon, … , A Fogo, I Ichikawa
V Kon, … , A Fogo, I Ichikawa
Published May 1, 1989
Citation Information: J Clin Invest. 1989;83(5):1762-1767. https://doi.org/10.1172/JCI114079.
View: Text | PDF
Research Article

Glomerular actions of endothelin in vivo.

  • Text
  • PDF
Abstract

In Munich-Wistar rats, a micropipette was inserted into a first-order branch of the left main renal artery and continuously infused with human/porcine endothelin (0.4 ng/min). Micropuncture measurements revealed substantial differences within the cortical microcirculation of the same left kidney: SNGFR was some 35% lower in glomeruli exposed to endothelin compared with non-endothelin-perfused glomeruli (P less than 0.005). Similarly, glomerular plasma flow rate was some 38% lower in the endothelin-exposed glomeruli (P less than 0.001). The hypoperfusion and hypofiltration in the endothelin-exposed glomeruli reflected an increase in resistances in the afferent and efferent arterioles. There was no difference in the value of the glomerular capillary ultrafiltration coefficient between the two populations of glomeruli. We also studied kidneys that underwent 25 min of renal artery clamping 48 h before study. Antiendothelin antibody infused into one of the branches of the main renal artery ameliorated the vasoconstriction characteristic of postischemic nephrons: within the cortical microcirculation, the SNGFR in glomeruli exposed to antiendothelin antibody was 27.0 +/- 3.1 nl/min as compared with 17.4 +/- 1.7 measured in glomeruli not perfused with the antibody (P less than 0.001). Similarly, glomerular plasma flow rate was higher in the glomeruli exposed to antiendothelin antibody (128.7 +/- 14.4 nl/min vs. 66.6 +/- 5.6, P less than 0.005). Resistances in both the afferent and efferent arterioles were substantially lower in the antibody-exposed glomeruli. It is, therefore, suggested that endothelin, presumably released from damaged endothelium, may play an important intermediary role in the hypoperfusion and hypofiltration observed in postischemic kidneys.

Authors

V Kon, T Yoshioka, A Fogo, I Ichikawa

×

Full Text PDF | Download (1.39 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts