Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Sodium channels from human brain RNA expressed in Xenopus oocytes. Basic electrophysiologic characteristics and their modification by diphenylhydantoin.
G F Tomaselli, … , E Marban, G Yellen
G F Tomaselli, … , E Marban, G Yellen
Published May 1, 1989
Citation Information: J Clin Invest. 1989;83(5):1724-1732. https://doi.org/10.1172/JCI114073.
View: Text | PDF
Research Article

Sodium channels from human brain RNA expressed in Xenopus oocytes. Basic electrophysiologic characteristics and their modification by diphenylhydantoin.

  • Text
  • PDF
Abstract

We describe the expression and characterization of sodium channels from human brain RNA in the Xenopus oocyte. The expressed channel, studied by whole-cell voltage clamp, reveals characteristic selectivity for sodium as the permeant ion, voltage-dependent gating, and block by nanomolar concentrations of tetrodotoxin. Such channels are not seen in control oocytes injected with solvent only. The anticonvulsant diphenylhydantoin (DPH) inhibits the expressed channel in a voltage- and use-dependent manner, much like the effect seen in primary mammalian neuronal preparations. The inhibition of the expressed human sodium channel by DPH can be described by models previously developed to explain block of Na channels by local anesthetics. The preferential block of Na channels during depolarization helps explain the selectivity of DPH for neurons involved in seizure activity.

Authors

G F Tomaselli, E Marban, G Yellen

×

Full Text PDF | Download (1.69 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts