Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114067

Characterization of polymorphic forms of Fc receptor III on human neutrophils.

P A Ory, I M Goldstein, E E Kwoh, and S B Clarkson

Rosalind Russell Arthritis Research Laboratory, University of California, San Francisco 94143-0868.

Find articles by Ory, P. in: JCI | PubMed | Google Scholar

Rosalind Russell Arthritis Research Laboratory, University of California, San Francisco 94143-0868.

Find articles by Goldstein, I. in: JCI | PubMed | Google Scholar

Rosalind Russell Arthritis Research Laboratory, University of California, San Francisco 94143-0868.

Find articles by Kwoh, E. in: JCI | PubMed | Google Scholar

Rosalind Russell Arthritis Research Laboratory, University of California, San Francisco 94143-0868.

Find articles by Clarkson, S. in: JCI | PubMed | Google Scholar

Published May 1, 1989 - More info

Published in Volume 83, Issue 5 on May 1, 1989
J Clin Invest. 1989;83(5):1676–1681. https://doi.org/10.1172/JCI114067.
© 1989 The American Society for Clinical Investigation
Published May 1, 1989 - Version history
View PDF
Abstract

We characterized Fc receptor III (FcR III) on human neutrophils and found it to be heavily glycosylated and polymorphic. In some individuals, FcR III that had been digested with N-glycanase appeared after SDS-PAGE under reducing conditions as two bands with apparent molecular masses of 33 and 29 kD. In other individuals, N-glycanase-treated FcR III appeared as a single band with an Mr of either 33 or 29 kD. After SDS-PAGE of N-glycanase-treated FcR III under nonreducing conditions, the apparent Mr of each structural type was decreased, suggesting the presence of intramolecular disulfide bonds. Digestion of the 33-kD band and the 29-kD band with Staphylococcus aureus V8 protease yielded similar, but not identical, peptide maps. Thus, at least two polymorphic forms of FcR III are expressed on human neutrophils. The structural polymorphism of neutrophil FcR III correlated with previously described antigenic polymorphisms detected by monoclonal antibody Gran 11 and by alloantisera which recognize epitopes of the biallelic, neutrophil antigen (NA) system. Individuals whose neutrophils expressed the two-band structural type of FcR III were NA1NA2 heterozygotes. Individuals whose neutrophils expressed the single 33-kD band structural type were NA2NA2 homozygotes, and individuals whose neutrophils expressed the single 29-kD band structural type were NA1NA1 homozygotes. These findings indicate that antigenic and structural polymorphisms of human neutrophil FcR III are related and can be accounted for by differences at the level of primary protein structure.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1676
page 1676
icon of scanned page 1677
page 1677
icon of scanned page 1678
page 1678
icon of scanned page 1679
page 1679
icon of scanned page 1680
page 1680
icon of scanned page 1681
page 1681
Version history
  • Version 1 (May 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts