Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI114018

Hepatic adenosine triphosphate-dependent Ca2+ transport is mediated by distinct carriers on rat basolateral and canalicular membranes.

B L Blitzer, B R Hostetler, and K A Scott

Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45267.

Find articles by Blitzer, B. in: PubMed | Google Scholar

Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45267.

Find articles by Hostetler, B. in: PubMed | Google Scholar

Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45267.

Find articles by Scott, K. in: PubMed | Google Scholar

Published April 1, 1989 - More info

Published in Volume 83, Issue 4 on April 1, 1989
J Clin Invest. 1989;83(4):1319–1325. https://doi.org/10.1172/JCI114018.
© 1989 The American Society for Clinical Investigation
Published April 1, 1989 - Version history
View PDF
Abstract

To characterize and localize hepatic plasma membrane ATP-dependent Ca2+ transport and Na+/Ca2+ exchange, studies were performed using highly purified rat basolateral and canalicular membrane vesicles. ATP-dependent Ca2+ transport activity was present in vesicles from both domains, insensitive to azide, oligomycin, oxalate, calmodulin, and calmidazolium, and virtually abolished at pH 6.8. However, basolateral and canalicular transport differed significantly. While basolateral transport was markedly stimulated by 1 mM Mg2+, canalicular transport was Mg2+ independent. Basolateral transport was similar at pH 7.4 and 8.0 but canalicular activity was stimulated fourfold at pH 8.0. Both Ca2+ Km [1.4 +/- 0.1 (SE).10(-8) vs. 4.8 +/- 0.7.10(-8) M] and Vmax (3.6 +/- 0.1 vs. 9.0 +/- 0.6 nmol mg-1 protein min-1) were lower in basolateral than in canalicular vesicles. Basolateral transport was somewhat more nucleotide specific (for ATP) and sensitive to vanadate (IC50 130 vs. 500 microM, respectively) than was canalicular transport. Na+/Ca2+ exchange activity was not detected in membranes from either domain. These studies suggest that hepatic ATP-dependent Ca2+ transport is mediated by domain-specific carriers on the basolateral and canalicular membranes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1319
page 1319
icon of scanned page 1320
page 1320
icon of scanned page 1321
page 1321
icon of scanned page 1322
page 1322
icon of scanned page 1323
page 1323
icon of scanned page 1324
page 1324
icon of scanned page 1325
page 1325
Version history
  • Version 1 (April 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts