Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113991

Effect of tumor necrosis factor (TNF) on lipid metabolism in the diabetic rat. Evidence that inhibition of adipose tissue lipoprotein lipase activity is not required for TNF-induced hyperlipidemia.

K R Feingold, M Soued, I Staprans, L A Gavin, M E Donahue, B J Huang, A H Moser, R Gulli, and C Grunfeld

Department of Medicine, University of California, San Francisco.

Find articles by Feingold, K. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Soued, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Staprans, I. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Gavin, L. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Donahue, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Huang, B. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Moser, A. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Gulli, R. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco.

Find articles by Grunfeld, C. in: JCI | PubMed | Google Scholar

Published April 1, 1989 - More info

Published in Volume 83, Issue 4 on April 1, 1989
J Clin Invest. 1989;83(4):1116–1121. https://doi.org/10.1172/JCI113991.
© 1989 The American Society for Clinical Investigation
Published April 1, 1989 - Version history
View PDF
Abstract

Tumor necrosis factor (TNF) administration produces an increase in plasma triglycerides that may be due to inhibition of adipose lipoprotein lipase activity and/or a stimulation of hepatic lipogenesis. We now report that TNF administration to insulinopenic diabetic rats increases serum triglycerides (2 h, 2.4-fold; 17 h, 4.3-fold). Adipose tissue lipoprotein lipase activity was markedly decreased in diabetic animals compared with controls and was not further inhibited by TNF. Incorporation of tritiated water into fatty acids in the liver was increased 45% 1-2 h after TNF and 87% at 16-17 h. These results indicate that the TNF-induced increase in circulating lipid levels can occur in the absence of a TNF-induced inhibition of adipose tissue lipoprotein lipase activity. Moreover, the clearance from the circulation of triglycerides in chylomicrons was similar in control and TNF-treated animals; these results provide further evidence that the removal of triglyceride-rich lipoproteins is not altered in the TNF-treated animals. Our data suggest that the TNF-induced stimulation of hepatic lipid synthesis may play an important role in the increase in serum triglycerides. In addition, TNF administration to diabetic animals leads to an elevation in serum glucose levels (73% at 17 h) without a change in serum insulin levels. Thus, TNF stimulation of hepatic lipogenesis is independent of changes in insulin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1116
page 1116
icon of scanned page 1117
page 1117
icon of scanned page 1118
page 1118
icon of scanned page 1119
page 1119
icon of scanned page 1120
page 1120
icon of scanned page 1121
page 1121
Version history
  • Version 1 (April 1, 1989): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts