Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. Stimulation of cytosolic free calcium and inositol phosphate production via coupling to a pertussis toxin substrate.
M A Burnatowska-Hledin, W S Spielman
M A Burnatowska-Hledin, W S Spielman
Published January 1, 1989
Citation Information: J Clin Invest. 1989;83(1):84-89. https://doi.org/10.1172/JCI113888.
View: Text | PDF
Research Article

Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. Stimulation of cytosolic free calcium and inositol phosphate production via coupling to a pertussis toxin substrate.

  • Text
  • PDF
Abstract

The effects of arginine vasopressin (AVP) on the cytosolic free calcium concentration ([Ca2+]f) were examined in freshly immunodissected rabbit cortical collecting tubule cells using fluorescent Ca2+ indicators fura-2 and indo-1. The addition of AVP to a cell suspension resulted in a rapid and transient increase in the [Ca2+]f. The 1-deamino-8-D-AVP (dDVP), a V2 receptor agonist of AVP that stimulated adenosine 3',5' cAMP production in these cells, had no effect on [Ca2+]f and did not affect AVP-induced increase in [Ca2+]f. The AVP-induced increase in [Ca2+]f but not cAMP production was blocked by the V1 receptor antagonist, [1-(beta-mercapto-beta-beta-cyclopentamethylene propionic acid), 2-(O-methyl)tyrosine] Arg8-vasopressin. The AVP-stimulated increase in [Ca2+]f appeared to be largely due to Ca2+ release from intracellular stores as reduction of extracellular Ca2+ with EGTA had little if any effect on the AVP-induced increase in [Ca2+]f. This AVP-induced increase in [Ca2+]f was associated with an increase in inositol-1,4,5-trisphosphate production and appeared to involve a guanine nucleotide-binding protein (G), since the pretreatment of cells with pertussis toxin for 4-6 h inhibited this effect. Finally, measurements of [Ca2+]f in single cells suggest that only the principal cells of the collecting tubules respond to AVP with an increase in [Ca2+]f. In summary, these results demonstrate that the principal cells of the cortical collecting tubule possess two distinct receptor systems for vasopressin, the well-known V2 receptor coupled to adenylate cyclase, and a V1 receptor system that leads to the mobilization of cytosolic calcium, coupled through a pertussis toxin substrate (G protein) to a production of inositol phosphates.

Authors

M A Burnatowska-Hledin, W S Spielman

×

Full Text PDF

Download PDF (1.16 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts