Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments.
E W Gertz, … , W C Stanley, R A Neese
E W Gertz, … , W C Stanley, R A Neese
Published December 1, 1988
Citation Information: J Clin Invest. 1988;82(6):2017-2025. https://doi.org/10.1172/JCI113822.
View: Text | PDF
Research Article

Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments.

  • Text
  • PDF
Abstract

The purpose of this study was to investigate myocardial substrate utilization during moderate intensity exercise in humans. Coronary sinus and arterial catheters were inserted in nine healthy trained male subjects (mean age, 25 +/- 6 (SD) years). Dual carbon-labeled isotopes were infused, and substrate oxidation was quantitated by measuring myocardial production of 14CO2. Supine cycle ergometer exercise was performed at 40% of the subject's maximal O2 uptake. With exercise there was a significant increase in the arterial lactate level (P less than 0.05). A highly significant positive correlation was observed between the lactate level and the isotopic lactate extraction (r = 0.93; P less than 0.001). The myocardial isotopic lactate uptake increased from 34.9 +/- 6.5 mumol/min at rest to 120.4 +/- 36.5 mumol/min at 5 min of exercise (P less than 0.005). The 14CO2 data demonstrated that 100.4 +/- 3.5% of the lactate extracted as determined by isotopic analysis underwent oxidative decarboxylation. Myocardial glucose uptake also increased significantly with exercise (P less than 0.04). The [14C]glucose data showed that only 26.0 +/- 8.5% of the glucose extracted underwent immediate oxidation at rest, and during exercise the percentage being oxidized increased to 52.6 +/- 7.3% (P less than 0.01). This study demonstrates for the first time in humans an increase in myocardial oxidation of exogenous glucose and lactate during moderate intensity exercise.

Authors

E W Gertz, J A Wisneski, W C Stanley, R A Neese

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 650 64
PDF 94 42
Scanned page 500 13
Citation downloads 76 0
Totals 1,320 119
Total Views 1,439
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts