Abstract

The effect of chronic dietary acid on the apical membrane Na/H antiporter and basolateral membrane Na(HCO3)3 symporter was examined in the in vivo microperfused rat proximal tubule. Transporter activity was assayed with the epifluorescent measurement of cell pH using the intracellular, pH-sensitive fluorescent dye, (2'7')-bis(carboxyethyl)-(5,6)-carboxy-fluorescein (BCECF). BCECF was calibrated intracellularly, demonstrating similar pH-sensitivity of the dye in control and acidotic animals. In subsequent studies, lumen and peritubular capillaries were perfused to examine Na/H and Na(HCO3)3 transporter activity in the absence of contact with native fluid. The initial rate of change in cell pH (dpHi/dt) was 97, 50, and 44% faster in tubules from acidotic animals when peritubular [HCO3] was changed from 25 to 10 mM in the presence or absence of chloride, or peritubular [Na] was changed from 147 to 50 mM, respectively. dpHi/dt was 57% faster in tubules from acidotic animals when luminal [Na] was changed from 152 to 0 mM. Buffer capacities, measured using NH3/NH+4 addition, were similar in the two groups. The results demonstrate that chronic metabolic acidosis causes an adaptation in the intrinsic properties of both the apical membrane Na/H antiporter and basolateral membrane Na(HCO3)3 symporter.

Authors

P A Preisig, R J Alpern

×

Other pages: