TGF-beta 1 is a polypeptide that is abundant in bone matrix, is produced by bone cells, and modulates proliferation and differentiated functions of osteoblastic cells in vitro. TGF-beta 2 is a closely related polypeptide that was originally isolated from bone matrix. TGF-beta 1 has been shown previously to stimulate prostaglandin production in cultures of neonatal mouse calvariae, which causes these bones to resorb. We found similar effects with TGF-beta 2. In comparison, TGF-beta 1 and TGF-beta 2 failed to stimulate bone resorption in fetal rat long bone cultures during a 3-d incubation period in concentrations up to 50-100 times greater than those capable of inducing bone resorption in calvariae. Incubation with TGF-beta 1 for a further 3 d decreased bone resorption up to 30%. Moreover, bone resorption induced by the bone-resorbing agents IL 1 and 1,25-dihydroxyvitamin D3 was partially or completely inhibited by TGF-beta 1 and TGF-beta 2 during the second half of the 6-d incubation period. Inhibition of DNA synthesis with hydroxyurea inhibited bone resorption in long bones in a similar pattern to that seen with TGF-beta 1. The inhibitory effects of TGF-beta 1 and TGF-beta 2 on bone resorption in long bone cultures may therefore be due to inhibition of osteoclast precursor proliferation.
J Pfeilschifter, S M Seyedin, G R Mundy
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 256 | 4 |
41 | 16 | |
Scanned page | 219 | 2 |
Citation downloads | 47 | 0 |
Totals | 563 | 22 |
Total Views | 585 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.