Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Pre-beta-very low density lipoproteins as precursors of beta-very low density lipoproteins. A model for the pathogenesis of familial dysbetalipoproteinemia (type III hyperlipoproteinemia).
D A Chappell
D A Chappell
Published August 1, 1988
Citation Information: J Clin Invest. 1988;82(2):628-639. https://doi.org/10.1172/JCI113642.
View: Text | PDF
Research Article

Pre-beta-very low density lipoproteins as precursors of beta-very low density lipoproteins. A model for the pathogenesis of familial dysbetalipoproteinemia (type III hyperlipoproteinemia).

  • Text
  • PDF
Abstract

The physical, chemical, and receptor binding properties of very low density lipoprotein (VLDL) fractions from familial dysbetalipoproteinemic (dys-beta) subjects, homozygous for apolipoprotein (apo-) E2 (E2/2 phenotype), and subjects with the E3/3 phenotype were studied to gain insights into the pathogenesis of dysbetalipoproteinemia, a disorder characterized by the presence of beta-VLDL in the plasma. Pre-beta-VLDL from dys-beta subjects were larger (27 vs. 17 x 10(6) D) and more triglyceride rich (68 vs. 43% dry weight) than beta-VLDL. Pre-beta-VLDL predominated in the Sf greater than 100 flotation fraction, whereas beta-VLDL predominated in the Sf 20-60 fraction. Because lipolysis converts large VLDL (Sf greater than 100) in vivo to smaller, more cholesteryl ester-rich VLDL (Sf 20-60), it is likely that pre-beta-VLDL are precursors of beta-VLDL. Although beta-VLDL were not found in type V hyperlipidemic E3/3 subjects, they were induced by intravenous heparinization, suggesting that lipolysis of pre-beta-VLDL in vivo can result in beta-VLDL formation. Similarly, heparinization of a dys-beta subject produced more beta-VLDL, at the expense of pre-beta-VLDL. The pre-beta-VLDL from normolipidemic and type V hyperlipidemic E3/3 subjects, respectively, had 90 and 280 times the affinity for the apo-B,E(LDL) receptor than did the pre-beta-VLDL from dys-beta subjects. Heparin-induced beta-VLDL from type V hyperlipidemic subjects had a sixfold higher binding affinity than did heparin-induced beta-VLDL from dys-beta subjects. These data suggest that pre-beta-VLDL from E2/2 subjects interact poorly with lipoprotein receptors in vivo, decreasing their receptor-mediated clearance and increasing their conversion to beta-VLDL during lipolytic processing.

Authors

D A Chappell

×

Full Text PDF

Download PDF (2.63 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts