Advertisement
Research Article Free access | 10.1172/JCI113611
Department of Laboratory Medicine, University of California, San Francisco 94143.
Find articles by Takakuwa, Y. in: JCI | PubMed | Google Scholar
Department of Laboratory Medicine, University of California, San Francisco 94143.
Find articles by Mohandas, N. in: JCI | PubMed | Google Scholar
Published August 1, 1988 - More info
Skeletal proteins of the red blood cell apparently play an important role in regulating membrane material properties of deformability and stability. However, the role of various intracellular constituents in regulating membrane properties has not been clearly defined. To determine whether Ca2+ and calmodulin might play a role in this regulation, we measured the membrane stability and deformability of resealed ghosts prepared in the presence of varying concentrations of Ca2+ and calmodulin (CaM). For membranes resealed in the presence of Ca2+ and physiologic concentrations of CaM (2-8 microM), membrane stability decreased with increasing Ca2+ concentrations (greater than 1.0 microM). Moreover, Ca2+ and CaM-induced alterations in membrane stability were completely reversible. In the absence of CaM, an equivalent decrease in membrane stability was seen only when Ca2+ concentration was two orders of magnitude higher (greater than 100 microM). Calmodulin did not alter membrane stability in the absence of Ca2+. Compared with these changes in membrane stability, membrane deformability decreased only at Ca2+ concentrations greater than 100 microM, and calmodulin had no effect on Ca2+-induced decrease in membrane deformability. Examination of the effects of Ca2+ and CaM on various membrane interactions have enabled us to suggest that spectrin-protein 4.1-actin interaction may be one of the targets for the effect of Ca2+ and CaM. These results imply that Ca2+ and calmodulin can regulate membrane stability through modulation of skeletal protein interactions, and that these protein interactions are of a dynamic nature on intact membranes.