Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Dietary regulation of rat intestinal cholecystokinin gene expression.
R A Liddle, … , J D Carter, A R McDonald
R A Liddle, … , J D Carter, A R McDonald
Published June 1, 1988
Citation Information: J Clin Invest. 1988;81(6):2015-2019. https://doi.org/10.1172/JCI113552.
View: Text | PDF
Research Article

Dietary regulation of rat intestinal cholecystokinin gene expression.

  • Text
  • PDF
Abstract

Cholecystokinin (CCK) is a gastrointestinal hormone produced by discrete endocrine cells in the upper small intestine and released after ingestion of a meal. The present study was designed to determine if enhanced CCK secretion is associated with increases in intestinal CCK mRNA levels. Rats, prepared with indwelling intraduodenal cannulae, were first fed an elemental diet that did not stimulate CCK release. Next, as a means of stimulating CCK secretion, soybean trypsin inhibitor was perfused for up to 24 h. Trypsin inhibitor administration increased plasma CCK levels from 0.9 +/- 0.1 to approximately 5 pmol/liter. RNA was prepared from the proximal small intestine at various times after trypsin inhibitor perfusion and mRNA levels analyzed by hybridization with a CCK cDNA probe. After 12 and 24 h of trypsin inhibitor treatment there were three- and fourfold increases, respectively, in CCK mRNA levels. In comparison, there was no change in beta-actin mRNA levels. To determine if regulation of CCK mRNA was at the level of CCK gene transcription, labeled transcripts from nuclear run-on incubations were hybridized to immobilized CCK cDNA. In trypsin inhibitor-treated rats, a two- to threefold increase in transcriptional activity was observed, whereas beta-actin gene transcription levels were unaltered. These studies indicate that stimulation of CCK secretion is associated with an increase in intestinal CCK mRNA content resulting from an increase in CCK gene transcription.

Authors

R A Liddle, J D Carter, A R McDonald

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 136 6
PDF 83 15
Figure 0 7
Scanned page 206 1
Citation downloads 64 0
Totals 489 29
Total Views 518
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts