Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox.
T Guarnieri
T Guarnieri
Published June 1, 1988
Citation Information: J Clin Invest. 1988;81(6):1938-1944. https://doi.org/10.1172/JCI113541.
View: Text | PDF
Research Article

Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox.

  • Text
  • PDF
Abstract

Sodium-dependent calcium exchange may be an important mediator of calcium reperfusion damage during the calcium paradox phenomenon. We measured intracellular sodium activity with ion-selective electrodes during a 15-min period of calcium reperfusion in isolated ferret papillary muscles. During the calcium-free period, alpha Nai increased from 9.0 +/- 0.9 to 18.9 +/- 4.3 mM. With reinstitution of calcium there was a significant contracture. The amount of contracture after calcium reinstitution was related to sodium loading during the calcium-free period. We were unable to block sodium entry during the calcium-free period with either nitrendipine, tetrodotoxin, or low concentrations of amiloride. 10(-3) M amiloride or lithium for sodium substitution in the calcium-free period, however, obliterated the increase in alpha Nai activity and the subsequent paradox. These data suggest that sodium loading is a necessary prerequisite for the calcium paradox and that one mechanism of sodium entry is through Na+/Ca2+ exchange. Under these conditions, no increase in the rest force is seen without previous sodium gains, suggesting that sodium-dependent calcium exchange is an important trigger for the calcium reflow, the calcium paradox.

Authors

T Guarnieri

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 78 0
PDF 46 8
Scanned page 388 1
Citation downloads 51 0
Totals 563 9
Total Views 572
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts