Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox.
T Guarnieri
T Guarnieri
Published June 1, 1988
Citation Information: J Clin Invest. 1988;81(6):1938-1944. https://doi.org/10.1172/JCI113541.
View: Text | PDF
Research Article

Decrease in the transmembrane sodium activity gradient in ferret papillary muscle as a prerequisite to the calcium paradox.

  • Text
  • PDF
Abstract

Sodium-dependent calcium exchange may be an important mediator of calcium reperfusion damage during the calcium paradox phenomenon. We measured intracellular sodium activity with ion-selective electrodes during a 15-min period of calcium reperfusion in isolated ferret papillary muscles. During the calcium-free period, alpha Nai increased from 9.0 +/- 0.9 to 18.9 +/- 4.3 mM. With reinstitution of calcium there was a significant contracture. The amount of contracture after calcium reinstitution was related to sodium loading during the calcium-free period. We were unable to block sodium entry during the calcium-free period with either nitrendipine, tetrodotoxin, or low concentrations of amiloride. 10(-3) M amiloride or lithium for sodium substitution in the calcium-free period, however, obliterated the increase in alpha Nai activity and the subsequent paradox. These data suggest that sodium loading is a necessary prerequisite for the calcium paradox and that one mechanism of sodium entry is through Na+/Ca2+ exchange. Under these conditions, no increase in the rest force is seen without previous sodium gains, suggesting that sodium-dependent calcium exchange is an important trigger for the calcium reflow, the calcium paradox.

Authors

T Guarnieri

×

Full Text PDF | Download (1.21 MB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts