Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effect of bone marrow transplantation on enzyme levels and clinical course in the neurologically affected twitcher mouse.
P M Hoogerbrugge, … , G Wagemaker, D W van Bekkum
P M Hoogerbrugge, … , G Wagemaker, D W van Bekkum
Published June 1, 1988
Citation Information: J Clin Invest. 1988;81(6):1790-1794. https://doi.org/10.1172/JCI113521.
View: Text | PDF
Research Article

Effect of bone marrow transplantation on enzyme levels and clinical course in the neurologically affected twitcher mouse.

  • Text
  • PDF
Abstract

The effect of allogeneic bone marrow transplantation (BMT) was investigated in the neurologically affected twitcher mouse, a model for human Krabbe's disease. Twitcher mice have a hereditary deficiency of the lysosomal enzyme galactosylceramidase, which causes growth delay, tremor, and paralysis of the hind legs. Death occurs at 30-40 d of age. After BMT galactosylceramidase activity increased to donor levels in hemopoietic organs. In lung, heart, and liver, galactosylceramidase activity rose to levels intermediate between those of twitcher and normal mice. Increased galactosylceramidase activity in liver parenchymal cells indicated uptake of the donor enzyme by recipient cells of nonhemopoietic origin. Enzyme activity also increased in kidney tissue. BMT resulted in a gradual increase in galactosylceramidase activity in the central nervous system to 15% of normal donor levels. A 5-6-fold increase in galactosylceramidase activity was found in the peripheral nervous system. This increase in enzyme activity was accompanied by a partial alleviation of neurological symptoms. In particular, paralysis of the hind legs was prevented by BMT. BMT led to a modest restoration of growth and prolonged survival. In several cases, the mice survived for more than 100 d, but eventually all animals died with severe neurological disease.

Authors

P M Hoogerbrugge, B J Poorthuis, A E Romme, J J van de Kamp, G Wagemaker, D W van Bekkum

×

Full Text PDF

Download PDF (1.06 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts