Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation.
Y T Wachtfogel, … , M Schapira, R W Colman
Y T Wachtfogel, … , M Schapira, R W Colman
Published May 1, 1988
Citation Information: J Clin Invest. 1988;81(5):1310-1316. https://doi.org/10.1172/JCI113456.
View: Text | PDF
Research Article

Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation.

  • Text
  • PDF
Abstract

We investigated whether adhesive glycoproteins, such as fibronectin or fibrinogen, could function to provide a nidus for neutrophil degranulation. Elastase release in recalcified plasma was normal in afibrinogenemic plasma, but 73% less in plasma depleted of fibronectin. Proteolytic digests of fibronectin, but not intact fibronectin (50-1,000 micrograms/ml), induced a concentration-dependent release of neutrophil elastase and lactoferrin. MAbs N293, which recognized the mid-molecule of fibronectin, N294, which was directed toward the 11-kD cell adhesive fragment, and N295, generated against the amino terminal of the 11-kD fragment, inhibited the release of elastase by 7, 24, and 60%, respectively. The cytoadhesive tetrapeptide portion of fibronectin, Arg-Gly-Asp-Ser (250-1,000 micrograms/ml), released 1.94 +/- 0.10 micrograms/ml of elastase from 10(7) neutrophils, in contrast to the lack of release by the control hexapeptide, Arg-Gly-Tyr-Ser-Leu-Gly. Plasmin appeared to be the enzyme responsible for fibronectin cleavage, since neutrophil elastase release in plasma that had been depleted of plasminogen was decreased and reconstitution of plasminogen-deficient plasma with purified plasminogen corrected the abnormal release. Plasmin cleaved fibronectin to multiple degradation products, each less than 200 kD. This fibronectin digest released 1.05 microgram/ml of elastase from 10(7) neutrophils. We suggest that the activation of plasminogen leads to the formation of fibronectin degradation products capable of functioning as agonists for neutrophils.

Authors

Y T Wachtfogel, W Abrams, U Kucich, G Weinbaum, M Schapira, R W Colman

×

Full Text PDF

Download PDF (1.51 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts