Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency.
S Yamaguchi, … , S Miyazawa, T Hashimoto
S Yamaguchi, … , S Miyazawa, T Hashimoto
Published March 1, 1988
Citation Information: J Clin Invest. 1988;81(3):813-817. https://doi.org/10.1172/JCI113388.
View: Text | PDF
Research Article

Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency.

  • Text
  • PDF
Abstract

The etiology of 3-ketothiolase deficiency has been attributed to a defect of mitochondrial acetoacetyl-CoA thiolase because the acetoacetyl-CoA thiolase activity in related materials is not activated by K+, a property characteristic for this enzyme. We studied the enzyme protein and the biosynthesis of mitochondrial acetoacetyl-CoA thiolase, using cultured skin fibroblasts from a 5-yr-old boy with 3-ketothiolase deficiency. The following results were obtained. (a) Activation of acetoacetyl-CoA thiolase activity by K+ was nil; (b) The enzyme activity was not affected by treatment with the antibody against mitochondrial acetoacetyl-CoA thiolase; (c) A signal for mitochondrial acetoacetyl-CoA thiolase protein was not detected in the immunoblot analysis; and (d) Pulse-chase experiments of skin fibroblasts, using [35S]methionine, revealed no incorporation of radioactivity into this enzyme. Therefore, fibroblasts from this patient lacked mitochondrial acetoacetyl-CoA thiolase protein due to a defect in its biosynthesis.

Authors

S Yamaguchi, T Orii, N Sakura, S Miyazawa, T Hashimoto

×

Full Text PDF

Download PDF (1.40 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts