Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney.
C Lacombe, … , B Varet, P Tambourin
C Lacombe, … , B Varet, P Tambourin
Published February 1, 1988
Citation Information: J Clin Invest. 1988;81(2):620-623. https://doi.org/10.1172/JCI113363.
View: Text | PDF
Research Article

Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney.

  • Text
  • PDF
Abstract

Erythropoietin (Epo)-producing cells were identified in the murine hypoxic kidney by in situ hybridization. Profound anemia was induced in order to greatly increase Epo production. This resulted in high levels of Epo mRNA in the kidney. 35S-labeled DNA fragments of the murine Epo gene were used as probes for in situ hybridization. Control experiments conducted in parallel included kidneys of nonanemic mice, RNase-treated hypoxic kidney sections, and 35S-labeled non-Epo-related DNA. The Epo probe gave a specific hybridization signal in the hypoxic kidney in the cortex and to a lesser extent in the outer medulla. Glomerular and tubular cells were not labeled. All positive cells were identified as peritubular cells. Using immunofluorescence, we showed that cells with the same topography contained Factor VIII-related antigen. These data demonstrated that peritubular cells, most likely endothelial cells, constitute the major site of Epo production in the murine hypoxic kidney.

Authors

C Lacombe, J L Da Silva, P Bruneval, J G Fournier, F Wendling, N Casadevall, J P Camilleri, J Bariety, B Varet, P Tambourin

×

Full Text PDF | Download (1.49 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts