Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113356

Kniest dysplasia is characterized by an apparent abnormal processing of the C-propeptide of type II cartilage collagen resulting in imperfect fibril assembly.

A R Poole, I Pidoux, A Reiner, L Rosenberg, D Hollister, L Murray, and D Rimoin

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Poole, A. in: JCI | PubMed | Google Scholar

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Pidoux, I. in: JCI | PubMed | Google Scholar

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Reiner, A. in: JCI | PubMed | Google Scholar

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Rosenberg, L. in: JCI | PubMed | Google Scholar

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Hollister, D. in: JCI | PubMed | Google Scholar

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Murray, L. in: JCI | PubMed | Google Scholar

Shriners Hospital for Crippled Children, Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.

Find articles by Rimoin, D. in: JCI | PubMed | Google Scholar

Published February 1, 1988 - More info

Published in Volume 81, Issue 2 on February 1, 1988
J Clin Invest. 1988;81(2):579–589. https://doi.org/10.1172/JCI113356.
© 1988 The American Society for Clinical Investigation
Published February 1, 1988 - Version history
View PDF
Abstract

Epiphyseal and growth plate cartilages from four cases of Kniest dysplasia have been studied. In each case collagen fibril organization appeared abnormal by electron microscopy compared with age-matched normal cartilages: fibrils were much thinner, of irregular shape and did not exhibit the characteristic banding pattern. This was associated with the absence (compared with normal cartilage) of the C-propeptide of type II collagen (chondrocalcin) from the extracellular matrix of epiphyseal cartilages, although it was detected (as in normal cartilages) in the lower hypertrophic zone of the growth plate in association with calcifying cartilage. The C-propeptide was abnormally concentrated in intracellular vacuolar sites in Kniest cartilages and its total content was reduced in all cases but not in all cartilages. Moreover, it was not a part of the procollagen molecule. In contrast, type II collagen alpha-chain size was normal, indicating the formation of a triple helix. Also type II collagen content was normal and it was present in extracellular sites and only occasionally detected intracellularly. These observations suggest that the defect in Kniest dysplasia may result from the secretion of type II procollagen lacking the C-propeptide and abnormal fibril formation, and that the C-propeptide is normally required for fibril formation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 579
page 579
icon of scanned page 580
page 580
icon of scanned page 581
page 581
icon of scanned page 582
page 582
icon of scanned page 583
page 583
icon of scanned page 584
page 584
icon of scanned page 585
page 585
icon of scanned page 586
page 586
icon of scanned page 587
page 587
icon of scanned page 588
page 588
icon of scanned page 589
page 589
Version history
  • Version 1 (February 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts