Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure.
J P Longabaugh, … , S F Vatner, C J Homcy
J P Longabaugh, … , S F Vatner, C J Homcy
Published February 1, 1988
Citation Information: J Clin Invest. 1988;81(2):420-424. https://doi.org/10.1172/JCI113335.
View: Text | PDF
Research Article

Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure.

  • Text
  • PDF
Abstract

Alterations in the level and function of the stimulatory guanyl nucleotide binding protein (Gs) from the cardiac sarcolemma were examined in a canine model of heart failure. The present study is based on our previous investigations that demonstrated both a loss of beta-adrenergic agonist high-affinity binding sites and a decreased adenylate cyclase activity in sarcolemma from failing hearts. Using cholera toxin and [32P]NAD, we labeled the alpha subunit of Gs (Gs alpha) and found a 59% reduction in the level of this protein. Further, a 50% reduction in Gs activity was noted in a reconstitution assay utilizing membranes from the mouse S49 lymphoma cell line cyc-, which is deficient in Gs. These data suggest that, in this model of pressure-overload left ventricular failure, the acquired defect in the beta-adrenergic receptor/adenylate cyclase system involves a deficiency in the coupling protein Gs. Such an abnormality may explain the decreased adrenergic responsiveness of the failing left ventricle.

Authors

J P Longabaugh, D E Vatner, S F Vatner, C J Homcy

×

Full Text PDF | Download (1.15 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts