Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.
S Muto, … , S Sansom, G Giebisch
S Muto, … , S Sansom, G Giebisch
Published February 1, 1988
Citation Information: J Clin Invest. 1988;81(2):376-380. https://doi.org/10.1172/JCI113329.
View: Text | PDF
Research Article

Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.

  • Text
  • PDF
Abstract

The cortical collecting tubule is one of the main nephron sites where mineralocorticoids and a high potassium diet modulate sodium (Na) and potassium (K) transport. In this study we explored the steroid-independent effects of a high K diet on the electrical transport properties of the isolated rabbit cortical collecting tubule principal cells. The electrophysiological analysis included transepithelial and single-cell potential measurements and equivalent circuit analysis. Rabbits were adrenalectomized (ADX) and received either a control diet (300 meq K/kg diet) or a high K diet (600 meq/kg diet) for 10 d before the experiment. The mean plasma K of ADX control animals was 6.9 mM, that of ADX animals on the high K diet 8.3 mM. The transepithelial potential difference was significantly elevated in the high K group (-3.5 mV, lumen negative), compared with ADX controls (-1.4 mV). The basolateral membrane potential in high K animals was also significantly elevated (-73 mV, cell negative, compared with -63 mV in controls). Estimates of the apical membrane partial Na and K conductances (GaNa and GaK) and of ion currents (IaNa and IaK) also demonstrated stimulation by the high K diet. In the high K group, both GaNa and GaK (0.56 and 2.67 mS.cm-2) were higher than control values (0.27 and 1.17 mS.cm-2). IaNa and IaK were also higher in high K animals (47.8 and -26.2 microA.cm-2) compared with control animals (22.4 and -11.6 microA.cm-2). Thus, a high K intake per se can induce electrophysiological changes consistent with stimulation of Na reabsorption and K secretion.

Authors

S Muto, S Sansom, G Giebisch

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 127 3
PDF 53 11
Scanned page 184 4
Citation downloads 64 0
Totals 428 18
Total Views 446
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts