Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editor's notes
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.
S Muto, … , S Sansom, G Giebisch
S Muto, … , S Sansom, G Giebisch
Published February 1, 1988
Citation Information: J Clin Invest. 1988;81(2):376-380. https://doi.org/10.1172/JCI113329.
View: Text | PDF
Research Article

Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.

  • Text
  • PDF
Abstract

The cortical collecting tubule is one of the main nephron sites where mineralocorticoids and a high potassium diet modulate sodium (Na) and potassium (K) transport. In this study we explored the steroid-independent effects of a high K diet on the electrical transport properties of the isolated rabbit cortical collecting tubule principal cells. The electrophysiological analysis included transepithelial and single-cell potential measurements and equivalent circuit analysis. Rabbits were adrenalectomized (ADX) and received either a control diet (300 meq K/kg diet) or a high K diet (600 meq/kg diet) for 10 d before the experiment. The mean plasma K of ADX control animals was 6.9 mM, that of ADX animals on the high K diet 8.3 mM. The transepithelial potential difference was significantly elevated in the high K group (-3.5 mV, lumen negative), compared with ADX controls (-1.4 mV). The basolateral membrane potential in high K animals was also significantly elevated (-73 mV, cell negative, compared with -63 mV in controls). Estimates of the apical membrane partial Na and K conductances (GaNa and GaK) and of ion currents (IaNa and IaK) also demonstrated stimulation by the high K diet. In the high K group, both GaNa and GaK (0.56 and 2.67 mS.cm-2) were higher than control values (0.27 and 1.17 mS.cm-2). IaNa and IaK were also higher in high K animals (47.8 and -26.2 microA.cm-2) compared with control animals (22.4 and -11.6 microA.cm-2). Thus, a high K intake per se can induce electrophysiological changes consistent with stimulation of Na reabsorption and K secretion.

Authors

S Muto, S Sansom, G Giebisch

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 89 0
PDF 16 15
Scanned page 83 0
Citation downloads 21 0
Totals 209 15
Total Views 224

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts