Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.
S Muto, … , S Sansom, G Giebisch
S Muto, … , S Sansom, G Giebisch
Published February 1, 1988
Citation Information: J Clin Invest. 1988;81(2):376-380. https://doi.org/10.1172/JCI113329.
View: Text | PDF
Research Article

Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits.

  • Text
  • PDF
Abstract

The cortical collecting tubule is one of the main nephron sites where mineralocorticoids and a high potassium diet modulate sodium (Na) and potassium (K) transport. In this study we explored the steroid-independent effects of a high K diet on the electrical transport properties of the isolated rabbit cortical collecting tubule principal cells. The electrophysiological analysis included transepithelial and single-cell potential measurements and equivalent circuit analysis. Rabbits were adrenalectomized (ADX) and received either a control diet (300 meq K/kg diet) or a high K diet (600 meq/kg diet) for 10 d before the experiment. The mean plasma K of ADX control animals was 6.9 mM, that of ADX animals on the high K diet 8.3 mM. The transepithelial potential difference was significantly elevated in the high K group (-3.5 mV, lumen negative), compared with ADX controls (-1.4 mV). The basolateral membrane potential in high K animals was also significantly elevated (-73 mV, cell negative, compared with -63 mV in controls). Estimates of the apical membrane partial Na and K conductances (GaNa and GaK) and of ion currents (IaNa and IaK) also demonstrated stimulation by the high K diet. In the high K group, both GaNa and GaK (0.56 and 2.67 mS.cm-2) were higher than control values (0.27 and 1.17 mS.cm-2). IaNa and IaK were also higher in high K animals (47.8 and -26.2 microA.cm-2) compared with control animals (22.4 and -11.6 microA.cm-2). Thus, a high K intake per se can induce electrophysiological changes consistent with stimulation of Na reabsorption and K secretion.

Authors

S Muto, S Sansom, G Giebisch

×

Full Text PDF | Download (930.06 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts