Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113269

Specific action of the lipoxygenase pathway in mediating angiotensin II-induced aldosterone synthesis in isolated adrenal glomerulosa cells.

J L Nadler, R Natarajan, and N Stern

Section of Endocrinology, University of Southern California/Los Angeles County Medical Center 90033.

Find articles by Nadler, J. in: PubMed | Google Scholar

Section of Endocrinology, University of Southern California/Los Angeles County Medical Center 90033.

Find articles by Natarajan, R. in: PubMed | Google Scholar

Section of Endocrinology, University of Southern California/Los Angeles County Medical Center 90033.

Find articles by Stern, N. in: PubMed | Google Scholar

Published December 1, 1987 - More info

Published in Volume 80, Issue 6 on December 1, 1987
J Clin Invest. 1987;80(6):1763–1769. https://doi.org/10.1172/JCI113269.
© 1987 The American Society for Clinical Investigation
Published December 1, 1987 - Version history
View PDF
Abstract

Angiotensin II (AII) in adrenal glomerulosa cells activates phospholipase C resulting in the formation of inositol phosphates and diacylglycerol rich in arachidonic acid (AA). Although glomerulosa cells can metabolize AA via cyclooxygenase (CO), this pathway plays little role in aldosterone synthesis. Recent evidence suggests that the lipoxygenase (LO) pathway may be important for hormonal secretion in endocrine tissues such as the islet of Langerhans. However, the capacity of the glomerulosa cell to synthesize LO products and their role in aldosterone secretion is not known. To study this, the effect of nonselective and selective LO inhibitors on AII, ACTH, and potassium-induced aldosterone secretion and LO product formation was evaluated in isolated rat glomerulosa cells. BW755c, a nonselective LO inhibitor dose dependently reduced the AII-stimulated level of aldosterone without altering AII binding (91 +/- 6 to 36 +/- 4 ng/10(6) cells/h 10(-4) M, P less than 0.001). The same effect was observed with another nonselective LO blocker, phenidone, and a more selective 12-LO inhibitor, Baicalein. In contrast U-60257, a selective 5-LO inhibitor did not change the AII-stimulated levels of aldosterone (208 +/- 11% control, AII 10(-9) M vs. 222 +/- 38%, AII + U-60257). The LO blockers action was specific for AII since neither BW755c nor phenidone altered ACTH or K+-induced aldosterone secretion. AII stimulated the formation of the 12-LO product 12-hydroxyeicosatetraenoic acid (12-HETE) as measured by ultraviolet detection and HPLC in AA loaded cells and by a specific RIA in unlabeled cells (501 +/- 50 to 990 +/- 10 pg/10(5) cells, P less than 0.02). BW755c prevented the AII-mediated rise in 12-HETE formation. In contrast, neither ACTH nor K+ increased 12-HETE levels. The addition of 12-HETE or its unstable precursor 12-HPETE (10(-9) or 10(-8) M) completely restored AII action during LO blockade. AII also produced an increase in 15-HETE formation, but the 15-LO products had no effect on aldosterone secretion. These studies suggest that the 12-LO pathway plays a key role as a new specific mediator of AII-induced aldosterone secretion.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1763
page 1763
icon of scanned page 1764
page 1764
icon of scanned page 1765
page 1765
icon of scanned page 1766
page 1766
icon of scanned page 1767
page 1767
icon of scanned page 1768
page 1768
icon of scanned page 1769
page 1769
Version history
  • Version 1 (December 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts