Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113250

On the association of the platelet-specific alloantigen, Pena, with glycoprotein IIIa. Evidence for heterogeneity of glycoprotein IIIa.

K Furihata, D J Nugent, A Bissonette, R H Aster, and T J Kunicki

Blood Center of Southeastern Wisconsin, Milwaukee 53233.

Find articles by Furihata, K. in: PubMed | Google Scholar

Blood Center of Southeastern Wisconsin, Milwaukee 53233.

Find articles by Nugent, D. in: PubMed | Google Scholar

Blood Center of Southeastern Wisconsin, Milwaukee 53233.

Find articles by Bissonette, A. in: PubMed | Google Scholar

Blood Center of Southeastern Wisconsin, Milwaukee 53233.

Find articles by Aster, R. in: PubMed | Google Scholar

Blood Center of Southeastern Wisconsin, Milwaukee 53233.

Find articles by Kunicki, T. in: PubMed | Google Scholar

Published December 1, 1987 - More info

Published in Volume 80, Issue 6 on December 1, 1987
J Clin Invest. 1987;80(6):1624–1630. https://doi.org/10.1172/JCI113250.
© 1987 The American Society for Clinical Investigation
Published December 1, 1987 - Version history
View PDF
Abstract

Neonatal alloimmune thrombocytopenic purpura associated with a new platelet-specific alloantigen Pena has been reported. We now provide direct evidence that the Pena determinant is associated with glycoprotein (GP) IIIa, but that it is distinct from epitopes that define the PlA system. By ELISA wherein monoclonal antibodies specific for GPIIb (Tab) and specific for GPIIIa (AP3) were used to capture and hold antigens from a platelet lysate prepared under conditions that generate free GPIIb and GPIIIa, anti-Pena reacted with GPIIIa held by AP3 but not with GPIIb held by Tab. In an alternative ELISA where purified GPIIIa from both PlA1-positive and PlA1-negative platelets were used individually as antigen, anti-Pena reacted with both allelic forms of GPIIIa. By radioimmuno-precipitation, anti-Pena precipitated a single surface-labeled membrane protein with electrophoretic characteristics in sodium dodecyl sulfate-polyacrylamide gels, under nonreduced or reduced conditions, identical to those of GPIIIa. By fluorocytometry, platelets from several donors, regardless of PlA phenotype, bound an amount of anti-Pena roughly equivalent to one-half that amount of anti-PlA1 bound by PlA1 homozygous (A1/A1) platelets and roughly equal to that amount of anti-PlA1 bound by PlA1 heterozygous (A1/A2) platelets. Using platelets from donors typed homozygous for PlA1 and Pena in a quantitative indirect binding assay, 14-24,000 molecules of anti-Pena and 41-51,000 molecules of anti-PlA1 were bound per platelet at saturation. Anti-Pena completely inhibited ADP-induced aggregation of Pena-positive platelets, regardless of PlA phenotype. These results indicate that the Pena determinant is associated with GPIIIa but distinct from PlA.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1624
page 1624
icon of scanned page 1625
page 1625
icon of scanned page 1626
page 1626
icon of scanned page 1627
page 1627
icon of scanned page 1628
page 1628
icon of scanned page 1629
page 1629
icon of scanned page 1630
page 1630
Version history
  • Version 1 (December 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts