Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113243

Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E.

M S Weintraub, S Eisenberg, and J L Breslow

Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, New York 10021.

Find articles by Weintraub, M. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, New York 10021.

Find articles by Eisenberg, S. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, New York 10021.

Find articles by Breslow, J. in: PubMed | Google Scholar

Published December 1, 1987 - More info

Published in Volume 80, Issue 6 on December 1, 1987
J Clin Invest. 1987;80(6):1571–1577. https://doi.org/10.1172/JCI113243.
© 1987 The American Society for Clinical Investigation
Published December 1, 1987 - Version history
View PDF
Abstract

Apolipoprotein E (apo E) plays an important role in receptor mediated clearance of lipoprotein particles from plasma. Common genetic variation in apo E exists with three alleles coding for proteins called E2, E3, and E4. In in vitro receptor binding assays, E2 binds poorly, whereas E3 and E4 function normally. Recently, the apo E phenotype has been shown to have an effect on low density lipoprotein (LDL) cholesterol levels with levels in subjects with E2 lower and E4 higher than E3. We have examined the effect of the apo E polymorphism on dietary fat clearance using the vitamin A-fat loading test, which specifically labels intestinally derived lipoproteins with retinyl palmitate (RP). 27 normal subjects were studied, 10 with E3/3, 9 with E3/2, 7 with E4/3, and 1 with E4/4. After a vitamin A-containing fatty meal, postprandial RP concentrations were measured in chylomicron (Sf greater than 1,000) and nonchylomicron (Sf less than 1,000) fractions for 14 h. Compared with E3/3 subjects, E3/2 subjects had a significantly higher nonchylomicron RP concentration (P less than 0.05) (peak heights and areas below the curves) indicating slower clearance and the E4/3, E4/4 group had a significantly lower nonchylomicron RP concentration (P less than 0.05) indicating faster clearance. The clearance in the latter group was twice that of E3/2 subjects (P less than 0.01). Thus, heterozygosity for the defective form of apo E, E2, delays, and the surprising presence of a functionally normal allele, E4, increases clearance. This apo E effect on exogenous fat clearance may explain the recently described effect of the apo E phenotypes on LDL cholesterol levels.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1571
page 1571
icon of scanned page 1572
page 1572
icon of scanned page 1573
page 1573
icon of scanned page 1574
page 1574
icon of scanned page 1575
page 1575
icon of scanned page 1576
page 1576
icon of scanned page 1577
page 1577
Version history
  • Version 1 (December 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts