Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113187

Essential fatty acid deficiency depletes rat glomeruli of resident macrophages and inhibits angiotensin II-induced eicosanoid synthesis.

J B Lefkowith and G Schreiner

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Lefkowith, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Schreiner, G. in: JCI | PubMed | Google Scholar

Published October 1, 1987 - More info

Published in Volume 80, Issue 4 on October 1, 1987
J Clin Invest. 1987;80(4):947–956. https://doi.org/10.1172/JCI113187.
© 1987 The American Society for Clinical Investigation
Published October 1, 1987 - Version history
View PDF
Abstract

Essential fatty acid (EFA) deficiency exerts a beneficial effect on immune-mediated glomerulonephritis, preventing both the tissue injury and consequent mortality. Because both macrophages and eicosanoids are thought to play pathogenic roles in glomerulonephritis, and because macrophages play an important role in modulating arachidonate metabolism at sites of renal injury, the effects of EFA deficiency on the population of resident glomerular macrophages and on glomerular eicosanoid generation were examined. EFA deficiency led to a striking reduction in the number of resident glomerular macrophages and a corresponding reduction in the number of resident glomerular Ia+ cells. This phenomenon was not strain-specific, was not due to a decrease in circulating monocytes, was not a function of changes in cell surface labeling characteristics, and was not restricted to a specific subset of glomeruli. In addition, EFA deficiency affected other areas of the renal cortex: a comparable depletion of interstitial macrophages and Ia+ cells was also observed. In conjunction with the decrease in glomerular macrophages seen with the deficiency state, a marked decrease in both basal and angiotensin II-stimulated glomerular eicosanoid production was noted. In contrast to angiotensin II, platelet-activating factor-induced eicosanoid production was not significantly affected by the deficiency state. These changes in glomerular eicosanoid production could not be attributed to changes in glomerular cyclooxygenase or reacylation capacity. Dietary (n-6) fatty acid supplementation, but not (n-3) fatty acid supplementation, reversed both the decrease in glomerular macrophages and the diminished eicosanoid metabolism seen with the deficiency state. Understanding the mechanisms behind the changes in the glomerular microenvironment induced by EFA deficiency may provide a basis for elucidating the protective effect of dietary fatty acid manipulation on immune-mediated glomerulonephritis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 947
page 947
icon of scanned page 948
page 948
icon of scanned page 949
page 949
icon of scanned page 950
page 950
icon of scanned page 951
page 951
icon of scanned page 952
page 952
icon of scanned page 953
page 953
icon of scanned page 954
page 954
icon of scanned page 955
page 955
icon of scanned page 956
page 956
Version history
  • Version 1 (October 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts