Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.
E Fernández-Repollet, … , E Tapia, M Martínez-Maldonado
E Fernández-Repollet, … , E Tapia, M Martínez-Maldonado
Published October 1, 1987
Citation Information: J Clin Invest. 1987;80(4):1045-1049. https://doi.org/10.1172/JCI113158.
View: Text | PDF
Research Article

Effects of angiotensin-converting enzyme inhibition on altered renal hemodynamics induced by low protein diet in the rat.

  • Text
  • PDF
Abstract

We assessed the role of angiotensin II in mediating the alterations in renal hemodynamics known to result from low protein feeding to normal rats by examining the effect of the angiotensin-converting enzyme (ACE) inhibitor captopril. 2 wk of low protein (6% casein) diet resulted in decreased glomerular filtration rate (normal protein [NP], 1.82 +/- 0.17 vs. low protein [LP], 0.76 +/- 0.01 ml/min; P less than 0.05) and renal plasma flow (NP, 6.7 +/- 0.2 vs. LP, 3.3 +/- 0.3 ml/min; P less than 0.05); renal vascular resistance rose (NP, 8.7 +/- 0.4 vs. LP, 19.8 +/- 1.4 dyn . s per cm5; P less than 0.05). These changes were accompanied by a significant decrease in plasma renin activity (NP, 7.0 +/- 0.7 vs. LP, 4.4 +/- 0.8 ng A I/ml per h; P less than 0.05), plasma aldosterone concentration (NP, 7.0 +/- 0.6 vs. LP, 4.1 +/- 0.7 ng/dl; P less than 0.05), and urinary PGE2 excretion (NP, 3,120 +/- 511 vs. LP, 648 +/- 95 pg/mgCr; P less than 0.05); by contrast renal renin content was significantly increased (NP, 2,587 +/- 273 vs. LP, 7,032 +/- 654 ng A I/mg protein; P less than 0.05). Treatment with captopril (30 mg/kg per d) raised glomerular filtration rate (GFR; LP + capt, 1.6 +/- 0.2 ml/min) and renal plasma flow (RPF; LP + capt, 6.7 +/- 0.7 ml/min), and reduced renal vascular resistance (LP + capt, 9.2 +/- 0.5 dyn/s per cm5) in low protein-fed animals. These values were not different from those measured in untreated and captopril-treated rats fed a normal (23%) protein diet. There were no changes in systemic mean arterial pressure in any group of rats. These data provide evidence that intrarenal angiotensin II mediates the changes in intrarenal hemodynamics induced by protein deprivation. The effects of low protein feeding may be partly potentiated by the reduction in PGE2 synthesis. However, the normalization of GFR and RPF in view of only modest increases in PGE2 excretion after captopril (LP, 648 +/- 95 vs. LP + capt, 1,131 +/- 82 pg/mgCr; P less than 0.05) suggests that if PGE2 is involved in these changes, it plays a permissive but not essential role in the increased renovascular resistance.

Authors

E Fernández-Repollet, E Tapia, M Martínez-Maldonado

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts