Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by rat hepatic 3 alpha-hydroxysteroid dehydrogenase. I. Studies with the purified enzyme, isolated rat hepatocytes, and inhibition by indomethacin.
H Takikawa, … , A Stolz, N Kaplowitz
H Takikawa, … , A Stolz, N Kaplowitz
Published September 1, 1987
Citation Information: J Clin Invest. 1987;80(3):852-860. https://doi.org/10.1172/JCI113143.
View: Text | PDF
Research Article

Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by rat hepatic 3 alpha-hydroxysteroid dehydrogenase. I. Studies with the purified enzyme, isolated rat hepatocytes, and inhibition by indomethacin.

  • Text
  • PDF
Abstract

We recently identified that the Y' bile acid binders are 3 alpha-hydroxysteroid dehydrogenases (3 alpha-HSD). In the present studies, purified 3 alpha-HSD catalyzed rapid 3H loss from [3 beta-3H, C24-14C]lithocholic and chenodeoxycholic acids without net conversion to 3-oxo bile acids under physiologic pH and redox conditions. [3 beta-3H]Cholic acid was a poor substrate. The Y' fraction of hepatic cytosol was exclusively responsible for this activity and 3H was transferred selectively to NADP+. Time-dependent 3H loss was also seen in isolated hepatocytes. Further hydroxylation products of lithocholic and chenodeoxycholic acids lost 3H at the same rate, whereas 3H loss from lithocholic acid rapidly ceased, which suggests compartmentation of this bile acid in hepatocytes. Indomethacin inhibited 3H loss from bile acids either in incubations with the pure enzyme or in isolated hepatocytes. Indomethacin did not alter the initial uptake rate of bile acids by hepatocytes, but caused a redistribution of unconjugated bile acids into the medium at early time points (2.5 and 5.0 min) and that of conjugated bile acids at later time intervals (30 min). 3H loss from the 3 beta position therefore can be used to probe the interaction between bile acids and cytosolic 3 alpha-HSD in intact cells, and indomethacin is capable of inhibiting this interaction.

Authors

H Takikawa, A Stolz, N Kaplowitz

×

Full Text PDF

Download PDF (1.70 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts