Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113141

Vasodilatory actions of alpha-human atrial natriuretic peptide and high Ca2+ effects in normal man.

T Fujita, Y Ito, H Noda, Y Sato, K Ando, K Kangawa, and H Matsuo

Find articles by Fujita, T. in: JCI | PubMed | Google Scholar

Find articles by Ito, Y. in: JCI | PubMed | Google Scholar

Find articles by Noda, H. in: JCI | PubMed | Google Scholar

Find articles by Sato, Y. in: JCI | PubMed | Google Scholar

Find articles by Ando, K. in: JCI | PubMed | Google Scholar

Find articles by Kangawa, K. in: JCI | PubMed | Google Scholar

Find articles by Matsuo, H. in: JCI | PubMed | Google Scholar

Published September 1, 1987 - More info

Published in Volume 80, Issue 3 on September 1, 1987
J Clin Invest. 1987;80(3):832–840. https://doi.org/10.1172/JCI113141.
© 1987 The American Society for Clinical Investigation
Published September 1, 1987 - Version history
View PDF
Abstract

To study vascular actions of synthetic alpha-human atrial natriuretic polypeptide (alpha hANP) in man, forearm blood flow (FBF) was measured by strain-gauge plethysmograph during the continuous infusion of 100 ng/min alpha hANP dissolved in 5% dextrose into the brachial artery in healthy subjects. alpha hANP increased FBF, with the concomitant increase in ipsilateral limb venous plasma concentrations of alpha hANP. Overall, there was a significant linear correlation between the decrements of ipsilateral forearm vascular resistance (FVR) during infusions of alpha hANP and initial FVR levels (r = -0.883, P less than 0.01). Moreover, alpha hANP, at the stepwise increasing doses of 20, 100, and 500 ng/min, increased FBF in a dose-related fashion: alpha hANP elicits a concentration-dependent vasodilation of forearm vascular beds. Concomitantly, infusions of alpha hANP caused a dose-dependent increase in ipsilateral limb venous plasma cyclic guanosine monophosphate (cyclic GMP). Overall, there were direct correlations of FBF either to ipsilateral venous plasma alpha hANP (r = 0.724, P less than 0.01) or to cyclic GMP concentrations (r = 0.637, P less than 0.01). Subsequently, isoosmolar CaCl2 solution was infused into the same brachial artery at a rate of 0.09 meq/min, and then, with a 2.5 +/- 0.2-mg/dl increase in ipsilateral venous serum calcium concentrations the incremental responses of both FBF and plasma cyclic GMP to alpha hANP were severely blunted. There was also a significant positive linear correlation between FBF and venous plasma cyclic GMP during infusions of alpha hANP with the simultaneous administration of CaCl2 (r = 0.807, P less than 0.01). Finally, the addition of CaCl2 infusion did not change the slope of the regression line of the FBF-plasma cyclic GMP relationship during infusions of alpha hANP. Evidence presented suggests that alpha hANP acts directly on the forearm vascular beds in man, eliciting its vascular relaxant effect, possibly by increasing cellular levels of cyclic GMP. Moreover, modest elevations of serum calcium inhibit the alpha hANP-dependent vasodilation, possibly through the suppression of cyclic GMP activation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 832
page 832
icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
icon of scanned page 836
page 836
icon of scanned page 837
page 837
icon of scanned page 838
page 838
icon of scanned page 839
page 839
icon of scanned page 840
page 840
Version history
  • Version 1 (September 1, 1987): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts