Abstract

We investigated metabolic utilization of exogenous (modelled after lung surfactant) phospholipids by granular pneumocytes in primary culture. Cells were incubated for 21, 65, and 140 min with [3H-methyl]dipalmitoylphosphatidylcholine (DPPC) containing liposomes prepared from synthetic lipids. Radioactivity in cellular phosphatidylcholine (PC) declined steadily to 50% of the total trypsin-resistant cell-associated radioactivity. The proportion of radioactivity increased with time in cytidine-5'-diphosphate-choline and phosphorylcholine, which suggested reutilization of choline for PC synthesis. Cells incubated with liposomes for 2 h revealed that of the total cell-associated radioactivity, 7% was in lamellar bodies and 10% in the microsomal fraction. The lipid-associated radioactivity was 24% in "soluble," 96% in lamellar bodies, and 92% in the microsomal fraction. Percent of total PC label recovered in disaturated PC of microsomal fractions decreased (slope = -5.27%/h) with time of incubation (r = 0.67). Incubation of cells with liposomes containing ([3H-methyl]choline-[14C]palmitoyl) DPPC led to altered isotope ratios in both lamellar bodies and microsomes. These observations indicate that granular pneumocytes degrade exogenous PC and resynthesize PC from degradation products.

Authors

A Chander, J Reicherter, A B Fisher

×

Other pages: