Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Protection against the lethal effects of pentobarbital in mice by a benzodiazepine receptor inverse agonist, 6,7-dimethoxy-4-ethyl-3-carbomethoxy-beta-carboline.
H Havoundjian, … , S M Paul, P Skolnick
H Havoundjian, … , S M Paul, P Skolnick
Published February 1, 1987
Citation Information: J Clin Invest. 1987;79(2):473-477. https://doi.org/10.1172/JCI112836.
View: Text | PDF
Research Article

Protection against the lethal effects of pentobarbital in mice by a benzodiazepine receptor inverse agonist, 6,7-dimethoxy-4-ethyl-3-carbomethoxy-beta-carboline.

  • Text
  • PDF
Abstract

The benzodiazepine receptor inverse agonist 6,7-dimethoxy-4-ethyl-3-carbomethoxy-beta-carboline (DMCM) (1.5-15 mg/kg) was administered to mice 5 min after a lethal (LD94) injection of pentobarbital. DMCM (1.5-5 mg/kg) increased short-term (1 h) survival in a dose-dependent fashion, with an optimum survival rate more than five times greater than mice receiving pentobarbital alone. Statistically significant increases in long-term (24 h) survival were also observed after both 5 and 10 mg/kg of DMCM (34 and 33%, respectively) compared with animals receiving pentobarbital alone (6%). Two doses of DMCM (5 and 2.5 mg/kg, respectively) administered 55 min apart produced an even greater increase (58%) in 24-h survival rates. Doses of DMCM that increased 1- and 24-h survival were not lethal when administered alone, and were below the dose that produced convulsions in 50% (CD50) of the animals. The protective effects of DMCM were blocked by pretreatment with the benzodiazepine receptor agonist ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo- 4H-imidazo[1,5a][1,4]benzodiazodiazepine-3-carboxylate (Ro 15-1788), which suggests the effects of DMCM are mediated through the benzodiazepine receptor. These findings suggest that DMCM or another benzodiazepine receptor ligand with full inverse agonist qualities could prove effective as an antidote for barbiturate intoxication in man.

Authors

H Havoundjian, G F Reed, S M Paul, P Skolnick

×

Full Text PDF

Download PDF (958.38 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts