Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Calcitonin stimulation of renal 25-hydroxyvitamin D-1 alpha-hydroxylase activity in hypophosphatemic mice. Evidence that the regulation of calcitriol production is not universally abnormal in X-linked hypophosphatemia.
T Nesbitt, … , B Lobaugh, M K Drezner
T Nesbitt, … , B Lobaugh, M K Drezner
Published January 1, 1987
Citation Information: J Clin Invest. 1987;79(1):15-19. https://doi.org/10.1172/JCI112776.
View: Text | PDF
Research Article

Calcitonin stimulation of renal 25-hydroxyvitamin D-1 alpha-hydroxylase activity in hypophosphatemic mice. Evidence that the regulation of calcitriol production is not universally abnormal in X-linked hypophosphatemia.

  • Text
  • PDF
Abstract

Hypophosphatemia (Hyp) mice have defective regulation of 25(OH)D-1 alpha-hydroxylase activity in response to hypophosphatemia, hypocalcemia, and parathyroid hormone (PTH) administration. However, recent observations support the existence of anatomically distinct, independently regulated renal 1 alpha-hydroxylase systems in mammalian proximal convoluted and straight tubules. To more completely define the extent of the 1 alpha-hydroxylase regulatory defect in Hyp-mice, we compared enzyme maximum velocity in normal and mutants after infusion of calcitonin. Upon stimulation, renal 1 alpha-hydroxylase activity increased to similar levels in normal and Hyp-mouse renal homogenates. Moreover, time-course and dose-dependence studies revealed similar patterns of response in the animal models. Subsequently, we examined whether PTH and calcitonin stimulatory effects on enzyme activity are mediated through different mechanisms. In both animal models administration of PTH and calcitonin increased enzyme activity to levels greater than those obtained after maximal stimulation by either hormone alone, consistent with additive effects. These observations indicate that a calcitonin-sensitive component of 1 alpha-hydroxylase is not compromised in the X-linked hypophosphatemic syndrome.

Authors

T Nesbitt, B Lobaugh, M K Drezner

×

Full Text PDF

Download PDF (1.03 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts