Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase.
G Capasso, … , G Malnic, G Giebisch
G Capasso, … , G Malnic, G Giebisch
Published December 1, 1986
Citation Information: J Clin Invest. 1986;78(6):1558-1567. https://doi.org/10.1172/JCI112748.
View: Text | PDF
Research Article

Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase.

  • Text
  • PDF
Abstract

Free-flow micropuncture studies were carried out on superficial rat proximal and distal tubules to assess the participation of different nephron segments in bicarbonate transport. Particular emphasis was placed on the role of the distal tubule, and micro-calorimetric methods used to quantitate bicarbonate reabsorption. Experiments were carried out in control conditions, during dietary potassium withdrawal, and after acute intravenous infusions of carbonic anhydrase. We observed highly significant net bicarbonate reabsorption in normal acid-base conditions as evidenced by the maintenance of significant bicarbonate concentration gradients in the presence of vigorous fluid absorption. Distal bicarbonate reabsorption persisted in hypokalemic alkalosis and even steeper transepithelial concentration gradients of bicarbonate were maintained. Enhancement of net bicarbonate reabsorption followed the acute intravenous administration of carbonic anhydrase but was limited to the nephron segments between the late proximal and early distal tubule. The latter observation is consistent with a disequilibrium pH along the proximal straight tubule (S3 segment), the thick ascending limb of Henle, and/or the early distal tubule.

Authors

G Capasso, R Kinne, G Malnic, G Giebisch

×

Full Text PDF

Download PDF (1.95 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts