Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Effect of dexamethasone on hepatic glucose and insulin metabolism after oral glucose in conscious dogs.
Z Chap, … , M L Entman, J B Field
Z Chap, … , M L Entman, J B Field
Published November 1, 1986
Citation Information: J Clin Invest. 1986;78(5):1355-1361. https://doi.org/10.1172/JCI112722.
View: Text | PDF
Research Article

Effect of dexamethasone on hepatic glucose and insulin metabolism after oral glucose in conscious dogs.

  • Text
  • PDF
Abstract

To examine whether hyperinsulinemia associated with glucocorticoid treatment results solely from hypersecretion of insulin or also involves altered fractional hepatic extraction, oral glucose (1 g/kg body wt) was administered to dogs with or without dexamethasone treatment (2 mg/d for 2 d). Dexamethasone significantly increased basal glucose and insulin concentrations in the portal vein, hepatic vein, and femoral artery, reduced basal fractional hepatic extraction of insulin from 43 +/- 4% to 22 +/- 4%, and, after oral glucose, increased retention by the liver of net glucose released into the portal system from 27 +/- 4% to 53 +/- 13%. Intraportal insulin infusion (1 and 2 mU/kg per min) after 7 d of dexamethasone treatment (2 mg/d) caused less suppression of endogenous glucose production, and less exogenous glucose was required to maintain an euglycemic clamp than in control animals. Dexamethasone treatment is associated with: decreased basal fractional hepatic insulin extraction contributing to hyperinsulinemia; and less suppression of endogenous glucose production and increase in peripheral uptake in response to insulin, but no reduction in net hepatic glucose uptake after oral glucose.

Authors

Z Chap, R H Jones, J Chou, C J Hartley, M L Entman, J B Field

×

Full Text PDF | Download (1.34 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts