Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Familial apolipoprotein E deficiency.
E J Schaefer, … , L A Zech, H B Brewer Jr
E J Schaefer, … , L A Zech, H B Brewer Jr
Published November 1, 1986
Citation Information: J Clin Invest. 1986;78(5):1206-1219. https://doi.org/10.1172/JCI112704.
View: Text | PDF
Research Article

Familial apolipoprotein E deficiency.

  • Text
  • PDF
Abstract

A unique kindred with premature cardiovascular disease, tubo-eruptive xanthomas, and type III hyperlipoproteinemia (HLP) associated with familial apolipoprotein (apo) E deficiency was examined. Homozygotes (n = 4) had marked increases in cholesterol-rich very low density lipoproteins (VLDL) and intermediate density lipoproteins (IDL), which could be effectively lowered with diet and medication (niacin, clofibrate). Homozygotes had only trace amounts of plasma apoE, and accumulations of apoB-48 and apoA-IV in VLDL, IDL, and low density lipoproteins. Radioiodinated VLDL apoB and apoE kinetic studies revealed that the homozygous proband had markedly retarded fractional catabolism of VLDL apoB-100, apoB-48 and plasma apoE, as well as an extremely low apoE synthesis rate as compared to normals. Obligate heterozygotes (n = 10) generally had normal plasma lipids and mean plasma apoE concentrations that were 42% of normal. The data indicate that homozygous familial apoE deficiency is a cause of type III HLP, is associated with markedly decreased apoE production, and that apoE is essential for the normal catabolism of triglyceride-rich lipoprotein constituents.

Authors

E J Schaefer, R E Gregg, G Ghiselli, T M Forte, J M Ordovas, L A Zech, H B Brewer Jr

×

Full Text PDF | Download (4.07 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts