Abstract

We assessed the roles of the pulmonary and bronchial circulations as potential heat sources to the pulmonary airways during respiratory heat loss, by observing the changes in airstream temperature that accompanied temporary occlusion of the pulmonary or bronchial circulations. Baseline end-expiratory and end-inspiratory airstream temperatures were 35.4 +/- 0.2 degrees C (SEM) and 30.9 +/- 0.3 degrees C, respectively, among all trials. With occlusion of the lower lobe pulmonary arteries for 3 min ipsilateral end-expiratory and end-inspiratory airstream temperatures fell by 2.8 +/- 0.2 and 1.1 +/- 0.2 degrees C, respectively, during hyperpnea with room temperature air, and by 3.5 +/- 0.5 and 1.8 +/- 0.2 degrees C, respectively, during hyperpnea with frigid air. In marked contrast, interruption of the bronchial circulation for 3 min had no effect on airstream temperatures. These data indicate that under these conditions, the pulmonary circulation, but not the bronchial circulation, serves as an important local heat source for respiratory heat exchange within the pulmonary airways.

Authors

J Solway, A R Leff, I Dreshaj, N M Munoz, E P Ingenito, D Michaels, R H Ingram Jr, J M Drazen

×

Other pages: