Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effects of calcium on vasopressin-mediated cyclic adenosine monophosphate formation in cultured rat inner medullary collecting tubule cells. Evidence for the role of intracellular calcium.
I Teitelbaum, T Berl
I Teitelbaum, T Berl
Published May 1, 1986
Citation Information: J Clin Invest. 1986;77(5):1574-1583. https://doi.org/10.1172/JCI112473.
View: Text | PDF
Research Article

Effects of calcium on vasopressin-mediated cyclic adenosine monophosphate formation in cultured rat inner medullary collecting tubule cells. Evidence for the role of intracellular calcium.

  • Text
  • PDF
Abstract

We explored the effects of alterations in extracellular and intracellular calcium concentration on arginine vasopressin (AVP)-stimulated cAMP formation in cultured rat inner medullary collecting tubule cells. cAMP formation remains constant at extracellular calcium concentrations between 0.5 and 4.0 mM, which did not change intracellular calcium. Maneuvers that alter intracellular calcium concentration are associated with marked changes in cAMP generation. EGTA decreases intracellular calcium and enhances AVP-stimulated cAMP formation, while increasing cellular calcium with 2 microM A23187 decreases AVP-stimulated cAMP formation in the presence, but not in the absence, of extracellular calcium. The changes in cAMP formation observed when intracellular calcium is altered are associated with reciprocal changes in prostaglandin E2 (PGE2) synthesis. Despite greater than 95% inhibition of PGE2 synthesis with 5 microM meclofenamic acid, the changes in cAMP formation accompanying alterations in intracellular calcium concentration are still evident. These studies suggest that intracellular calcium critically influences AVP-stimulated cAMP formation. It does so by a mechanism independent of PG that is probably mediated by a direct effect of the cation on the adenylate cyclase complex.

Authors

I Teitelbaum, T Berl

×

Full Text PDF

Download PDF (2.73 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts