Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Relationship of superoxide production to cytoplasmic free calcium in human monocytes.
S P Scully, … , G B Segel, M A Lichtman
S P Scully, … , G B Segel, M A Lichtman
Published April 1, 1986
Citation Information: J Clin Invest. 1986;77(4):1349-1356. https://doi.org/10.1172/JCI112440.
View: Text | PDF
Research Article

Relationship of superoxide production to cytoplasmic free calcium in human monocytes.

  • Text
  • PDF
Abstract

Calcium has been proposed as an intracellular second messenger for activation of secretion, phagocytosis, and the oxidative burst of neutrophils. We have examined the role of calcium in human monocyte activation. Concanavalin A (Con A)-stimulated monocytes displayed an increment in cytoplasmic ionized calcium at 31 +/- 6 s and the onset of superoxide production at 61 +/- 9 s. The increase in cytoplasmic calcium invariably preceded the onset of superoxide production. If the external calcium concentration was reduced to less than 28 nM by the addition of 10 mM EGTA, superoxide production was not diminished at 5 min; however, superoxide production decreased thereafter. The Con A-evoked increment in cytoplasmic ionized calcium was blunted upon the addition of EGTA and decreased further with time. Both the production of superoxide and the Con A-evoked increment in cytoplasmic ionized calcium displayed a 50% inhibition after 15 min of calcium depletion and were completely inhibited after 60 min. Total cell calcium fell from 0.7 to 0.5 fmol/cell, and the basal level of ionized calcium fell from 83 to 30 nM after 60 min. Histidine, a strong chelator of divalent cations other than calcium and magnesium, had no effect on monocyte superoxide production or on ionized calcium concentrations, indicating that EGTA inhibition was due to cell calcium depletion. In calcium-depleted cells, Con A did not evoke superoxide production until calcium was restored to the incubation medium. The restoration of calcium to Con A-treated, calcium-depleted monocytes permitted a rapid rise in the cytoplasmic ionized calcium, and the production of superoxide within 9 s. These data suggest that an increase in ionized cytoplasmic calcium is necessary for the activation of monocyte superoxide production by Con A. The rise in ionized calcium in response to Con A results, in part, from an internal redistribution of calcium, which is sufficient to permit superoxide generation.

Authors

S P Scully, G B Segel, M A Lichtman

×

Full Text PDF | Download (1.69 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts