Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
1,25-Dihydroxyvitamin D3 maintains adherence of human monocytes and protects them from thermal injury.
B S Polla, … , E P Amento, S M Krane
B S Polla, … , E P Amento, S M Krane
Published April 1, 1986
Citation Information: J Clin Invest. 1986;77(4):1332-1339. https://doi.org/10.1172/JCI112438.
View: Text | PDF
Research Article

1,25-Dihydroxyvitamin D3 maintains adherence of human monocytes and protects them from thermal injury.

  • Text
  • PDF
Abstract

Adherence to a substratum is a characteristic feature of monocyte-macrophages which may be required for several effector functions. Human peripheral blood monocytes selected by adherence were found to readhere preferentially at 1 h to fibronectin or to a biological matrix. There was then a progressive decrease in the number of adherent cells, and by 48 h only 8-20% of monocytes remained adherent. This loss of adherence occurred while monocytes remained viable by criteria such as exclusion of trypan blue or release of lactate dehydrogenase. 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) maintained the adherence of cultured monocytes to tissue culture plastic as well as to the biological matrix. This effect was concentration- and time-dependent, and suppressed by inhibitors of protein synthesis. Cellular proteins were labeled after incubation with [35S]methionine. Analysis by two-dimensional gel electrophoresis revealed increased labeling of several distinct proteins in 1,25-(OH)2D3-treated monocytes compared with control monocytes. The increased loss of adherence and decreased overall protein synthesis observed in monocytes incubated at 45 degrees C was partially prevented by preincubation of the cells with 1,25-(OH)2D3. We further evaluated the effects of thermal stress and 1,25-(OH)2D3 on protein synthesis by monocytes, and found that 1,25-(OH)2D3 increased the synthesis of heat shock proteins, protected normal protein synthesis, and increased the rate of recovery of normal protein synthesis after the thermal stress. These observations suggest that 1,25-(OH)2D3 influences monocytes by preserving the synthesis of proteins, including those critical for the maintenance of cell adherence.

Authors

B S Polla, A M Healy, E P Amento, S M Krane

×

Full Text PDF | Download (2.00 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts