Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Distinct patterns of transmembrane calcium flux and intracellular calcium mobilization after differentiation antigen cluster 2 (E rosette receptor) or 3 (T3) stimulation of human lymphocytes.
C H June, … , P G Beatty, J A Hansen
C H June, … , P G Beatty, J A Hansen
Published April 1, 1986
Citation Information: J Clin Invest. 1986;77(4):1224-1232. https://doi.org/10.1172/JCI112425.
View: Text | PDF
Research Article

Distinct patterns of transmembrane calcium flux and intracellular calcium mobilization after differentiation antigen cluster 2 (E rosette receptor) or 3 (T3) stimulation of human lymphocytes.

  • Text
  • PDF
Abstract

We evaluated CD2 (E rosette) and CD3 (T3)-triggered activation of resting lymphocytes by measuring the intracellular free calcium concentration ([Ca2+]i) of individual cells. The [Ca2+]i of indo-1-loaded cells was measured by flow cytometry and responses were correlated with cell surface phenotype. Stimulation with anti-CD3 antibody caused an increase in [Ca2+]i in greater than 90% of CD3+ cells within 1 min, and furthermore, the response was restricted to cells bearing the CD3 marker. In contrast, stimulation of cells with anti-CD2 antibodies produced a biphasic response pattern with an early component in CD3- cells and a late component in CD3+ cells. Thus, the CD2 response does not require cell surface expression of CD3. In addition, stimulation of a single CD2 epitope was sufficient for activation of CD3- cells, whereas stimulation of two CD2 epitopes was required for activation of CD3+ cells. Both the CD2 and CD3 responses were diminished in magnitude and duration by EGTA. However, approximately 50% of T cells still had a brief response in the presence of EGTA, indicating that the increased [Ca2+]i results in part from intracellular calcium mobilization, and furthermore demonstrates that extracellular calcium is required for a full and sustained response. Our results support the concept that CD2 represents the trigger for a distinct pathway of activation both for T cells that express the CD3 molecular complex and for large granular lymphocytes that do not.

Authors

C H June, J A Ledbetter, P S Rabinovitch, P J Martin, P G Beatty, J A Hansen

×

Full Text PDF | Download (1.63 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts