Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Deficiency of 3-methylglutaconyl-coenzyme A hydratase in two siblings with 3-methylglutaconic aciduria.
K Narisawa, … , M Duran, S K Wadman
K Narisawa, … , M Duran, S K Wadman
Published April 1, 1986
Citation Information: J Clin Invest. 1986;77(4):1148-1152. https://doi.org/10.1172/JCI112415.
View: Text | PDF
Research Article

Deficiency of 3-methylglutaconyl-coenzyme A hydratase in two siblings with 3-methylglutaconic aciduria.

  • Text
  • PDF
Abstract

We studied two patients with 3-methylglutaconic aciduria in order to determine the molecular defect. A new assay for 3-methylglutaconyl-coenzyme A (CoA) hydratase has been developed in which the substrate, [5-14C]3-methylglutaconyl-CoA, was synthesized using 3-methylcrotonyl-CoA carboxylase purified from bovine kidney. In this assay the products of the reaction are isolated by reverse-phase high performance liquid chromatography and the rates of conversion from substrate are measured. The Michaelis constant for 3-methylglutaconyl-CoA in normal fibroblasts was 6.9 mumol/liter. The mean activity of 3-methylglutaconyl-CoA hydratase in control fibroblasts was 495 pmol/min per mg protein. In the two patients the values were 11 and 17 pmol/min per mg protein, or 2-3% of normal.

Authors

K Narisawa, K M Gibson, L Sweetman, W L Nyhan, M Duran, S K Wadman

×

Full Text PDF | Download (775.16 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts