Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney.
M Brezis, … , F H Epstein, S Rosen
M Brezis, … , F H Epstein, S Rosen
Published November 1, 1985
Citation Information: J Clin Invest. 1985;76(5):1796-1806. https://doi.org/10.1172/JCI112171.
View: Text | PDF
Research Article

Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney.

  • Text
  • PDF
Abstract

Hypoxic injury was evaluated morphologically in the proximal tubule and in the medullary thick ascending limb of isolated rat kidneys perfused for 90 min without O2 or with various metabolic inhibitors. Inhibition of mitochondrial respiration (with rotenone, antimycin, oligomycin) or of intermediary metabolism (with monofluoroacetate, malonate, 2-deoxyglucose) caused reduction in renal oxygen consumption, renal function, and ATP content comparable with those elicited by oxygen deprivation. Metabolic inhibition produced hypoxiclike injury in the first portions of the proximal tubule, S1 and S2 ("clubbing" of microvilli, mitochondrial swelling), and the extent of damage was correlated with the degree of ATP depletion. In the third portion of the proximal tubule, S3, hypoxiclike damage (cytoplasmic edema or fragmentation) occurred most consistently when both aerobic and anaerobic metabolism were inhibited simultaneously. In the medullary thick ascending limb, none of the metabolic or mitochondrial inhibitors used could reproduce the injury of oxygen deprivation. Thus, the proximal tubule and the thick ascending limb have markedly different responses to cellular energy depletion, suggesting disparate mechanisms for hypoxic injury along the nephron.

Authors

M Brezis, P Shanley, P Silva, K Spokes, S Lear, F H Epstein, S Rosen

×

Full Text PDF

Download PDF (4.29 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts