Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Resistance of human tumor cells in vitro to oxidative cytolysis.
J O'Donnell-Tormey, … , C J DeBoer, C F Nathan
J O'Donnell-Tormey, … , C J DeBoer, C F Nathan
Published July 1, 1985
Citation Information: J Clin Invest. 1985;76(1):80-86. https://doi.org/10.1172/JCI111981.
View: Text | PDF
Research Article

Resistance of human tumor cells in vitro to oxidative cytolysis.

  • Text
  • PDF
Abstract

Nine human cell types, six of them malignant, displayed a marked resistance to lysis by hydrogen peroxide (LD50, 2-20 mM). Of the reactive oxygen intermediates generated extracellularly, only H2O2 lysed all the cell types. OH was lytic to one of four, OI- to one of one, and O-2 to none of four cell types tested. Resistance to oxidative lysis did not correlate with specific activity of catalase, glutathione (GSH) peroxidase, other peroxidases, or glutathione disulfide reductase, or with specific content of GSH. Resistance to H2O2 seemed to occur via mechanisms distinct from those responsible for cellular consumption of H2O2. Consumption was inhibitable by azide and was probably due to catalase in each cell type. In contrast, resistance to oxidative lysis occurred via distinct routes in different cells. One cell type used the GSH redox cycle as the primary defense against H2O2, like murine tumors previously studied. Other cells seemed to utilize catalase as the major defense against H2O2. Nonetheless, with both catalase and the GSH redox cycle inhibited, all the human cells tested exhibited an inherent resistance to oxidative lysis, that is, resistance independent of detectable degradation of H2O2.

Authors

J O'Donnell-Tormey, C J DeBoer, C F Nathan

×

Full Text PDF

Download PDF (1.49 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts