Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111801

Effects of endogenously produced leukotrienes, thromboxane, and prostaglandins on coronary vascular resistance in rabbit myocardial infarction.

A S Evers, S Murphree, J E Saffitz, B A Jakschik, and P Needleman

Find articles by Evers, A. in: PubMed | Google Scholar

Find articles by Murphree, S. in: PubMed | Google Scholar

Find articles by Saffitz, J. in: PubMed | Google Scholar

Find articles by Jakschik, B. in: PubMed | Google Scholar

Find articles by Needleman, P. in: PubMed | Google Scholar

Published March 1, 1985 - More info

Published in Volume 75, Issue 3 on March 1, 1985
J Clin Invest. 1985;75(3):992–999. https://doi.org/10.1172/JCI111801.
© 1985 The American Society for Clinical Investigation
Published March 1, 1985 - Version history
View PDF
Abstract

In an effort to evaluate the synthesis and function of eicosanoids in myocardial infarction, we have developed a technique of in vivo myocardial infarction in rabbits followed by ex vivo cardiac perfusion. Isolated Langendorff perfused infarcted hearts (removed 1 or 4 d after infarction) responded to the inflammatory cell agonist N-formylmethionyl-leucyl-phenylalanine (fMLP) with (a) the release of leukotrienes B4, C4, and D4; (b) the release of large amounts of thromboxane (235 +/- 66 ng/5 min), prostacyclin (714 +/- 285 ng/5 min), and prostaglandin E2 (PGE2) (330 +/- 108 ng/5 min); and (c) a coronary vasoconstriction (21.1 +/- 2.5% increase in coronary perfusion pressure) that was specifically inhibited by the peptidoleukotriene receptor antagonist FPL-55712. While noninfarcted hearts challenged with fMLP also released leukotrienes B4, C4, and D4, they released only small amounts of the cyclooxygenase products (thromboxane, 30 +/- 9 ng/5 min; prostacyclin, 120 +/- 54 ng/5 min; PGE2, 27 +/- 10 ng/5 min) and showed minimal vasoconstriction (5.6 +/- 2.1% increase in perfusion pressure). Similarly, hearts challenged with fMLP 30 d following infarction released only small amounts of the cyclooxygenase products (thromboxane, 42 +/- 8 ng/5 min; prostacyclin, 386 +/- 31 ng/5 min; PGE2, 79 +/- 25 ng/5 min). When bradykinin was administered, no leukotrienes were produced, but acutely infarcted hearts released 10 times more thromboxane, prostacyclin, and PGE2 than normal hearts and significantly larger amounts of these products than 30-d infarcted hearts. Histologic analysis showed no inflammatory cells in normal hearts, a prominent polymorphonuclear leukocyte infiltration in 1-d infarcted tissue, fibroblast proliferation with mononuclear cell invasion in 4-d infarcted tissue, and a fibrotic scar with scanty mononuclear cell infiltrate in 30-d infarcted tissue. Inflammatory cell invasion was temporarily associated with augmented cyclooxygenase metabolism, suggesting that infiltrating leukocytes may be responsible for production of thromboxane, prostacyclin, and PGE2 in acutely infarcted hearts. The finding that endogenously produced peptidoleukotrienes are potent coronary vasoconstrictors in infarcted rabbit hearts suggests that these products may contribute to tissue injury in myocardial infarction.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 992
page 992
icon of scanned page 993
page 993
icon of scanned page 994
page 994
icon of scanned page 995
page 995
icon of scanned page 996
page 996
icon of scanned page 997
page 997
icon of scanned page 998
page 998
icon of scanned page 999
page 999
Version history
  • Version 1 (March 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts