Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Estrogens and antiestrogens stimulate release of bone resorbing activity by cultured human breast cancer cells.
A Valentin-Opran, … , S Saez, G R Mundy
A Valentin-Opran, … , S Saez, G R Mundy
Published February 1, 1985
Citation Information: J Clin Invest. 1985;75(2):726-731. https://doi.org/10.1172/JCI111753.
View: Text | PDF
Research Article

Estrogens and antiestrogens stimulate release of bone resorbing activity by cultured human breast cancer cells.

  • Text
  • PDF
Abstract

Patients with advanced breast cancer may develop acute, severe hypercalcemia when treated with estrogens or antiestrogens. In this study, we examined the effects of estrogens and related compounds on the release of bone resorbing activity by cultured human breast cancer cells in vitro. We found that the estrogen receptor positive breast cancer cell line MCF-7 releases bone resorbing activity in response to low concentrations of 17 beta-estradiol. Bone resorbing activity was also released in response to the antiestrogen nafoxidine. Other steroidal compounds had no effect on the release of bone resorbing activity. Estrogen-stimulated release of bone resorbing activity occurred with live bone cultures, but not with devitalized bones, indicating that the effect was bone cell mediated. The breast cancer cell line MDA-231, which does not have estrogen receptors, did not release bone resorbing activity in response to 17 beta-estradiol or nafoxidine. Release of the bone resorbing activity by MCF-7 cells incubated with 17 beta-estradiol was inhibited by indomethacin (10 microM) and flufenamic acid (50 microM), two structurally unrelated compounds that inhibit prostaglandin synthesis. Concentrations of 17 beta-estradiol and nafoxidine that caused increased release of bone resorbing activity by the breast cancer cells caused a four- to fivefold increase in release of prostaglandins of the E series by MCF-7 cells. These data may explain why some patients with advanced breast cancer develop acute hypercalcemia when treated with estrogens or antiestrogens, and why bone metastases are more common in patients with estrogen receptor positive tumors.

Authors

A Valentin-Opran, G Eilon, S Saez, G R Mundy

×

Full Text PDF

Download PDF (1.16 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts