Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Abnormalities of myeloid progenitor cells after "successful" bone marrow transplantation.
S Li, … , J H Fitchen, R P Gale
S Li, … , J H Fitchen, R P Gale
Published January 1, 1985
Citation Information: J Clin Invest. 1985;75(1):234-241. https://doi.org/10.1172/JCI111679.
View: Text | PDF
Research Article

Abnormalities of myeloid progenitor cells after "successful" bone marrow transplantation.

  • Text
  • PDF
Abstract

We studied recovery of peripheral blood- and bone marrow-derived myeloid progenitor cells (CFU-G,M) in 29 patients who received bone marrow transplants 2 mo to 8.5 yr previously. All patients had normal levels of peripheral blood neutrophils, normal bone marrow cellularity, and a normal myeloid-erythroid ratio. Both peripheral blood- and bone marrow-derived CFU-G,M were markedly reduced compared with normal controls and bone marrow donors [5 +/- 1/10(6) vs. 37 +/- 4/10(6) (P less than 0.001) and 23 +/- 5/2 x 10(5) vs. 170 +/- 21/2 x 10(5) (P less than 0.001)]. Five patients had no detectable CFU-G,M even when 10(6) bone marrow cels were plated. These abnormalities of CFU-G,M were unrelated to age, sex, diagnosis, conditioning regimen, dose of bone marrow cells transplanted, and presence or absence of graft-vs.-host disease. Patients who received either autotransplants or transplants from identical twins also had decreased or absent CFU-G,M indicating that allogeneic factors and posttransplant immune suppressor with methotrexate or corticosteroids were not major determinants of this abnormality. Co-culture of normal or donor peripheral blood or bone marrow mononuclear cells with recipients peripheral blood or bone marrow mononuclear cells, purified T cells, or serum failed to show any evidence of active CFU-G,M suppression. Furthermore, the abnormality of CFU-G,M could not be corrected by the addition of normal syngeneic (donor) hematopoietic cells or serum. Depletion of T-cells from recipient bone marrow by physical techniques resulted in marked increase in CFU-G,M (36 +/- 13 vs. 138 +/- 36; P less than 0.05). The abnormality could be reproduced in vitro by readdition of autologous T cells. In contrast to results with T cell depletion by physical techniques, T cell depletion with a monoclonal anti-T antibody (B7) and complement had no effect. These data indicate that most-transplant recipients have a marked abnormality in CFU-G,M when these cells are cultured in vitro. In at least some of these patients, the decreased cloning efficiency of CFU-G,M appears to be mediated by a suppressive effect of autologous T cells.

Authors

S Li, R Champlin, J H Fitchen, R P Gale

×

Full Text PDF

Download PDF (1.52 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts