Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effect of corticotropin-like intermediate lobe peptide on pancreatic exocrine function in isolated rat pancreatic lobules.
J B Marshall, … , L D Manning, A J McCullough
J B Marshall, … , L D Manning, A J McCullough
Published November 1, 1984
Citation Information: J Clin Invest. 1984;74(5):1886-1889. https://doi.org/10.1172/JCI111608.
View: Text | PDF
Research Article

Effect of corticotropin-like intermediate lobe peptide on pancreatic exocrine function in isolated rat pancreatic lobules.

  • Text
  • PDF
Abstract

Naturally occurring derivatives of pro-opiomelanocortin (POMC) have been identified in various extra-pituitary sites, including the endocrine and exocrine pancreas. Corticotropin-like intermediate lobe peptide (CLIP = ACTH18-39), a naturally occurring derivative of POMC, has been suggested to be an insulin secretagogue. To determine whether CLIP might also affect the exocrine pancreas, we measured its effect on amylase secretion and protein synthesis and secretion in isolated rat pancreatic lobules. Lobules were dual-pulsed with trace amounts of 14C- and 3H-leucine, both in the presence and absence of CLIP (10(-9)-10(-6) M), using a technique that permitted the labeling of both the synthetic and secretory compartments. The effect of CLIP on protein synthesis was determined by comparing 3H-leucine incorporation into lobules with and without CLIP. The secretory effect of CLIP was determined by measuring (a) secreted 14C-labeled protein as a percent of total incorporated radiolabeled protein, and (b) amylase release into incubation medium. The effect of CLIP on amylase release was compared with that of secretin, cholecystokinin-octapeptide, and carbamylcholine. To localize the biologically active region of CLIP, we similarly studied synthetic ACTH25-39. We demonstrated that CLIP stimulates amylase and protein secretion in a dose-dependent manner and is of similar potency to secretin and carbamylcholine. This effect appears to require the ACTH18-24 region of CLIP and results from stimulus-secretion coupling rather than augmented protein synthesis. We also confirmed the presence of immunoreactive-adrenocorticotropic hormone (IR-ACTH) in rat pancreatic extract using a COOH-terminally directed antibody to ACTH1-39 and demonstrated that this IR-ACTH co-eluted with synthetic CLIP. These findings suggest that CLIP might be an endogenous modulator of pancreatic exocrine function.

Authors

J B Marshall, L P Kapcala, L D Manning, A J McCullough

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 185 89
PDF 48 17
Scanned page 143 21
Citation downloads 56 0
Totals 432 127
Total Views 559
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts