Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Platelet membrane glycoprotein IIIa contains target antigens that bind anti-platelet antibodies in immune thrombocytopenias.
D S Beardsley, … , R I Handin, S E Lux 4th
D S Beardsley, … , R I Handin, S E Lux 4th
Published November 1, 1984
Citation Information: J Clin Invest. 1984;74(5):1701-1707. https://doi.org/10.1172/JCI111587.
View: Text | PDF
Research Article

Platelet membrane glycoprotein IIIa contains target antigens that bind anti-platelet antibodies in immune thrombocytopenias.

  • Text
  • PDF
Abstract

The precise pathogenic mechanism of platelet destruction in immune thrombocytopenias is not known, although many investigators have found that platelet-associated IgG is increased in these diseases. We report here the differentiation between specific binding of anti-platelet antibody, associated with platelet destruction, and the ubiquitous presence of nonspecific, platelet-associated IgG. Using an electrophoretic separation and antibody overlay technique, we have identified a specific membrane protein that bears target platelet antigens in immune thrombocytopenias. When posttransfusion purpura serum was studied, antibody binding to the PlA1 antigen on glycoprotein IIIa was readily distinguished from the nonspecific binding of immunoglobulin to a protein of 200,000 mol wt. After reduction of disulfide bonds, the PlA1 antigenicity was not observed, and IgG bound nonspecifically to a protein band with an apparent molecular weight of 45,000. We have also identified anti-platelet antibodies in patients with idiopathic thrombocytopenic purpura and determined their antigenic specificity. Antibodies which bind to a 100,000-mol wt protein were found in nine of thirteen patients with chronic disease. The antigens in three of these cases were studied in detail by using both reduced and nonreduced control and Glanzmann's thrombasthenic platelets. Target antigens were localized to glycoprotein IIIa, but are different from PlA1. The immune thrombocytopenic purpura antigenic system is clearly distinguished from nonspecific platelet-associated IgG. Sera from eight children with acute idiopathic thrombocytopenic purpura were also studied. In all cases, the nonspecific IgG binding to the 200,000-mol wt protein was observed. However, we were unable to demonstrate antibody binding to glycoprotein IIIa, which suggested that the acute childhood form of this disease may have a different pathogenic mechanism than that of the autoimmune chronic cases.

Authors

D S Beardsley, J E Spiegel, M M Jacobs, R I Handin, S E Lux 4th

×

Full Text PDF | Download (1.21 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts